{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,14]],"date-time":"2025-04-14T18:04:46Z","timestamp":1744653886670,"version":"3.37.3"},"reference-count":98,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,11,11]],"date-time":"2019-11-11T00:00:00Z","timestamp":1573430400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003554","name":"Lundbeckfonden","doi-asserted-by":"publisher","award":["R105-9813"],"id":[{"id":"10.13039\/501100003554","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1016\/j.neuroimage.2019.116207","type":"journal-article","created":{"date-parts":[[2019,9,17]],"date-time":"2019-09-17T23:33:48Z","timestamp":1568763228000},"page":"116207","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":40,"special_numbering":"C","title":["Validation of structural brain connectivity networks: The impact of scanning parameters"],"prefix":"10.1016","volume":"204","author":[{"given":"Karen S.","family":"Ambrosen","sequence":"first","affiliation":[]},{"given":"Simon F.","family":"Eskildsen","sequence":"additional","affiliation":[]},{"given":"Max","family":"Hinne","sequence":"additional","affiliation":[]},{"given":"Kristine","family":"Krug","sequence":"additional","affiliation":[]},{"given":"Henrik","family":"Lundell","sequence":"additional","affiliation":[]},{"given":"Mikkel N.","family":"Schmidt","sequence":"additional","affiliation":[]},{"given":"Marcel A.J.","family":"van Gerven","sequence":"additional","affiliation":[]},{"given":"Morten","family":"M\u00f8rup","sequence":"additional","affiliation":[]},{"given":"Tim B.","family":"Dyrby","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2019.116207_bib1","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1093\/cercor\/bhr072","article-title":"Long-range clustered connections within extrastriate visual area V5\/MT of the rhesus macaque","volume":"22","author":"Ahmed","year":"2012","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.neuroimage.2019.116207_bib2","series-title":"2014 International Workshop on Pattern Recognition in Neuroimaging","article-title":"Nonparametric Bayesian clustering of structural whole brain connectivity in full image resolution","author":"Ambrosen","year":"2014"},{"key":"10.1016\/j.neuroimage.2019.116207_bib3","doi-asserted-by":"crossref","first-page":"816","DOI":"10.1093\/cercor\/bhk034","article-title":"Connectivity-based parcellation of broca\u2019s area","volume":"17","author":"Anwander","year":"2007","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.neuroimage.2019.116207_bib4","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.media.2007.06.004","article-title":"Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain","volume":"12","author":"Avants","year":"2008","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2019.116207_bib5","doi-asserted-by":"crossref","first-page":"4299","DOI":"10.1093\/cercor\/bhu326","article-title":"Validation of high-resolution tractography against in vivo tracing in the macaque visual cortex","volume":"25","author":"Azadbakht","year":"2015","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.neuroimage.2019.116207_bib6","doi-asserted-by":"crossref","first-page":"e784","DOI":"10.7717\/peerj.784","article-title":"Parcellating connectivity in spatial maps","volume":"3","author":"Baldassano","year":"2015","journal-title":"PeerJ"},{"key":"10.1016\/j.neuroimage.2019.116207_bib7","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/S0006-3495(94)80775-1","article-title":"MR diffusion tensor spectroscopy and imaging","volume":"66","author":"Basser","year":"1994","journal-title":"Biophys. J."},{"key":"10.1016\/j.neuroimage.2019.116207_bib8","doi-asserted-by":"crossref","first-page":"1732","DOI":"10.1016\/j.neuroimage.2012.06.002","article-title":"Human cortical connectome reconstruction from diffusion weighted MRI: the effect of tractography algorithm","volume":"62","author":"Bastiani","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib9","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.neuroimage.2006.09.018","article-title":"Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?","volume":"34","author":"Behrens","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib10","doi-asserted-by":"crossref","first-page":"750","DOI":"10.1038\/nn1075","article-title":"Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging","volume":"6","author":"Behrens","year":"2003","journal-title":"Nat. Neurosci."},{"key":"10.1016\/j.neuroimage.2019.116207_bib11","doi-asserted-by":"crossref","first-page":"1077","DOI":"10.1002\/mrm.10609","article-title":"Characterization and propagation of uncertainty in diffusion-weighted MR imaging","volume":"50","author":"Behrens","year":"2003","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116207_bib12","first-page":"378","article-title":"Age-related differences in multiple measures of white matter integrity: a diffusion tensor imaging study of healthy aging","volume":"31","author":"Bennett","year":"2010","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2019.116207_bib13","doi-asserted-by":"crossref","first-page":"1573","DOI":"10.3174\/ajnr.A3471","article-title":"High angular resolution diffusion imaging probabilistic tractography of the auditory radiation","volume":"34","author":"Berman","year":"2013","journal-title":"AJNR Am. J. Neuroradiol."},{"key":"10.1016\/j.neuroimage.2019.116207_bib14","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.neuroimage.2013.09.054","article-title":"-","volume":"86","author":"Buchanan","year":"2014","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib15","doi-asserted-by":"crossref","first-page":"11491","DOI":"10.1038\/s41598-017-09250-w","article-title":"Multidimensional encoding of brain connectomes","volume":"7","author":"Caiafa","year":"2017","journal-title":"Sci. Rep."},{"key":"10.1016\/j.neuroimage.2019.116207_bib16","doi-asserted-by":"crossref","first-page":"4628","DOI":"10.1093\/cercor\/bhv121","article-title":"A\u00a0diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data","volume":"25","author":"Calabrese","year":"2015","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.neuroimage.2019.116207_bib17","first-page":"316","article-title":"Automated topology correction for human brain segmentation","volume":"9","author":"Chen","year":"2006","journal-title":"Med. Image Comput. Comput. Assist. Interv."},{"key":"10.1016\/j.neuroimage.2019.116207_bib18","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1109\/TMI.2007.906087","article-title":"An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images","volume":"27","author":"Coupe","year":"2008","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116207_bib19","doi-asserted-by":"crossref","first-page":"524","DOI":"10.1038\/nmeth.2482","article-title":"Imaging human connectomes at the macroscale","volume":"10","author":"Craddock","year":"2013","journal-title":"Nat. Methods"},{"key":"10.1016\/j.neuroimage.2019.116207_bib20","doi-asserted-by":"crossref","first-page":"247","DOI":"10.3389\/fnins.2016.00247","article-title":"Microstructure informed tractography: pitfalls and open challenges","volume":"10","author":"Daducci","year":"2016","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.neuroimage.2019.116207_bib21","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1016\/j.neuroimage.2006.12.028","article-title":"An approach to high resolution diffusion tensor imaging in fixed primate brain","volume":"35","author":"D\u2019Arceuil","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib22","doi-asserted-by":"crossref","first-page":"530","DOI":"10.1016\/j.neuroimage.2007.04.067","article-title":"Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain","volume":"37","author":"Dauguet","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib23","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1016\/j.neuroimage.2012.12.066","article-title":"Estimating false positives and negatives in brain networks","volume":"70","author":"de Reus","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib24","doi-asserted-by":"crossref","first-page":"6758","DOI":"10.1523\/JNEUROSCI.0493-16.2016","article-title":"Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey","volume":"36","author":"Donahue","year":"2016","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2019.116207_bib25","doi-asserted-by":"crossref","first-page":"544","DOI":"10.1002\/hbm.21043","article-title":"An ex vivo imaging pipeline for producing high-quality and high-resolution diffusion-weighted imaging datasets","volume":"32","author":"Dyrby","year":"2011","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2019.116207_bib26","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.neuroimage.2018.06.049","article-title":"Validation strategies for the interpretation of microstructure imaging using diffusion MRI","volume":"182","author":"Dyrby","year":"2018","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib27","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.neuroimage.2014.09.005","article-title":"Interpolation of diffusion weighted imaging datasets","volume":"103","author":"Dyrby","year":"2014","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib28","doi-asserted-by":"crossref","first-page":"1267","DOI":"10.1016\/j.neuroimage.2007.06.022","article-title":"Validation of in vitro probabilistic tractography","volume":"37","author":"Dyrby","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib29","series-title":"2008 XXI Brazilian Symposium on Computer Graphics and Image Processing","article-title":"Evaluation of five algorithms for mapping brain cortical surfaces","author":"Eskildsen","year":"2008"},{"key":"10.1016\/j.neuroimage.2019.116207_bib30","first-page":"409","article-title":"Quantitative comparison of two cortical surface extraction methods using MRI phantoms","volume":"10","author":"Eskildsen","year":"2007","journal-title":"Med. Image Comput. Comput. Assist. Interv."},{"key":"10.1016\/j.neuroimage.2019.116207_bib31","first-page":"823","article-title":"Active surface approach for extraction of the human cerebral cortex from MRI","volume":"9","author":"Eskildsen","year":"2006","journal-title":"Med. Image Comput. Comput. Assist. Interv."},{"key":"10.1016\/j.neuroimage.2019.116207_bib32","series-title":"Medical Imaging 2005: Image Processing","article-title":"Extraction of the cerebral cortical boundaries from MRI for measurement of cortical thickness","author":"Eskildsen","year":"2005"},{"key":"10.1016\/j.neuroimage.2019.116207_bib33","doi-asserted-by":"crossref","first-page":"3508","DOI":"10.1093\/cercor\/bhw157","article-title":"The human brainnetome atlas: a new brain atlas based on connectional architecture","volume":"26","author":"Fan","year":"2016","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.neuroimage.2019.116207_bib34","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1016\/j.neuroimage.2013.04.087","article-title":"Graph analysis of the human connectome: promise, progress, and pitfalls","volume":"80","author":"Fornito","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib35","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1002\/mrm.10156","article-title":"Characterization of anisotropy in high angular resolution diffusion-weighted MRI","volume":"47","author":"Frank","year":"2002","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116207_bib36","doi-asserted-by":"crossref","first-page":"935","DOI":"10.1002\/mrm.1125","article-title":"Anisotropy in high angular resolution diffusion-weighted MRI","volume":"45","author":"Frank","year":"2001","journal-title":"Magn. Reson. Med."},{"issue":"5","key":"10.1016\/j.neuroimage.2019.116207_bib37","doi-asserted-by":"crossref","first-page":"1797","DOI":"10.1002\/mrm.26259","article-title":"\u201cMASSIVE\u201d brain dataset: multiple acquisitions for standardization of structural imaging validation and evaluation","volume":"77","author":"Froeling","year":"2016","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116207_bib38","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0075061","article-title":"A\u00a0connectome-based comparison of diffusion MRI schemes","volume":"8","author":"Gigandet","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2019.116207_bib39","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1002\/jmri.22062","article-title":"Relationships of brain white matter microstructure with clinical and MR measures in relapsing-remitting multiple sclerosis","volume":"31","author":"Giorgio","year":"2010","journal-title":"J.\u00a0Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116207_bib40","doi-asserted-by":"crossref","first-page":"15684","DOI":"10.1523\/JNEUROSCI.2308-09.2009","article-title":"Age- and gender-related differences in the cortical anatomical network","volume":"29","author":"Gong","year":"2009","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2019.116207_bib41","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1002\/mrm.1910340618","article-title":"The Rician distribution of noisy MRI data","volume":"34","author":"Gudbjartsson","year":"1995","journal-title":"Magn. Reson. Med."},{"year":"2005","series-title":"From Diffusion MRI to Brain Connectomics","author":"Hagmann","key":"10.1016\/j.neuroimage.2019.116207_bib42"},{"key":"10.1016\/j.neuroimage.2019.116207_bib43","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pcbi.1004534","article-title":"Bayesian estimation of conditional independence graphs improves functional connectivity estimates","volume":"11","author":"Hinne","year":"2015","journal-title":"PLoS Comput. Biol."},{"key":"10.1016\/j.neuroimage.2019.116207_bib44","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s00429-018-1759-1","article-title":"Topological principles and developmental algorithms might refine diffusion tractography","volume":"224","author":"Innocenti","year":"2019","journal-title":"Brain Struct. Funct."},{"key":"10.1016\/j.neuroimage.2019.116207_bib45","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1089\/brain.2012.0122","article-title":"Anatomical brain networks on the prediction of abnormal brain states","volume":"3","author":"Iturria-Medina","year":"2013","journal-title":"Brain Connect."},{"issue":"Suppl. 1","key":"10.1016\/j.neuroimage.2019.116207_bib46","doi-asserted-by":"crossref","first-page":"S103","DOI":"10.1016\/j.neurobiolaging.2014.02.032","article-title":"Alzheimer\u2019s Disease Neuroimaging Initiative, 2015. Seemingly unrelated regression empowers detection of network failure in dementia","volume":"36","author":"Jahanshad","year":"2015","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.neuroimage.2019.116207_bib47","doi-asserted-by":"crossref","first-page":"3190","DOI":"10.1523\/JNEUROSCI.2457-12.2013","article-title":"Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography","volume":"33","author":"Jbabdi","year":"2013","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2019.116207_bib48","doi-asserted-by":"crossref","first-page":"782","DOI":"10.1016\/j.neuroimage.2011.09.015","article-title":"FSL","volume":"62","author":"Jenkinson","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib49","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1002\/mrm.20033","article-title":"The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study","volume":"51","author":"Jones","year":"2004","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116207_bib50","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1002\/nbm.1543","article-title":"Twenty-five pitfalls in the analysis of diffusion MRI data","volume":"23","author":"Jones","year":"2010","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2019.116207_bib51","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.neuroimage.2012.06.081","article-title":"White matter integrity, fiber count, and other fallacies: the do\u2019s and don\u2019ts of diffusion MRI","volume":"73","author":"Jones","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib52","doi-asserted-by":"crossref","first-page":"4116","DOI":"10.1002\/hbm.22902","article-title":"Validation of tractography: comparison with manganese tracing","volume":"36","author":"Kn\u00f6sche","year":"2015","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2019.116207_bib53","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1214\/aoms\/1177729694","article-title":"On information and sufficiency","volume":"22","author":"Kullback","year":"1951","journal-title":"Ann. Math. Stat."},{"key":"10.1016\/j.neuroimage.2019.116207_bib54","doi-asserted-by":"crossref","first-page":"1044","DOI":"10.1016\/j.neuroimage.2007.12.053","article-title":"Microstructural maturation of the human brain from childhood to adulthood","volume":"40","author":"Lebel","year":"2008","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib55","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.neuroimage.2011.11.006","article-title":"Diffusion MRI at 25: exploring brain tissue structure and function","volume":"61","author":"Le Bihan","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib56","doi-asserted-by":"crossref","first-page":"1894","DOI":"10.1002\/hbm.21332","article-title":"The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography","volume":"33","author":"Li","year":"2011","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2019.116207_bib57","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0096247","article-title":"Addressing the path-length-dependency confound in white matter tract segmentation","volume":"9","author":"Liptrot","year":"2014","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2019.116207_bib58","doi-asserted-by":"crossref","first-page":"16876","DOI":"10.1523\/JNEUROSCI.4136-10.2010","article-title":"Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer\u2019s disease","volume":"30","author":"Lo","year":"2010","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2019.116207_bib59","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1145\/37402.37422","article-title":"Marching cubes: a high resolution 3D surface construction algorithm","volume":"21","author":"Lorensen","year":"1987","journal-title":"ACM SIGGRAPH Comput. Graph."},{"key":"10.1016\/j.neuroimage.2019.116207_bib60","doi-asserted-by":"crossref","first-page":"1349","DOI":"10.1038\/s41467-017-01285-x","article-title":"The challenge of mapping the human connectome based on diffusion tractography","volume":"8","author":"Maier-Hein","year":"2017","journal-title":"Nat. Commun."},{"key":"10.1016\/j.neuroimage.2019.116207_bib61","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1093\/cercor\/bhs270","article-title":"A\u00a0weighted and directed interareal connectivity matrix for macaque cerebral cortex","volume":"24","author":"Markov","year":"2014","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.neuroimage.2019.116207_bib62","doi-asserted-by":"crossref","first-page":"1254","DOI":"10.1093\/cercor\/bhq201","article-title":"Weight consistency specifies regularities of macaque cortical networks","volume":"21","author":"Markov","year":"2011","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.neuroimage.2019.116207_bib63","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.neuroimage.2016.05.035","article-title":"Group-wise parcellation of the cortex through multi-scale spectral clustering","volume":"136","author":"Parisot","year":"2016","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib64","doi-asserted-by":"crossref","first-page":"1058","DOI":"10.1038\/nmeth.3098","article-title":"Evaluation and statistical inference for human connectomes","volume":"11","author":"Pestilli","year":"2014","journal-title":"Nat. Methods"},{"key":"10.1016\/j.neuroimage.2019.116207_bib65","doi-asserted-by":"crossref","first-page":"637","DOI":"10.1148\/radiology.201.3.8939209","article-title":"Diffusion tensor MR imaging of the human brain","volume":"201","author":"Pierpaoli","year":"1996","journal-title":"Radiology"},{"key":"10.1016\/j.neuroimage.2019.116207_bib66","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.jneumeth.2015.06.016","article-title":"The influence of construction methodology on structural brain network measures: a review","volume":"253","author":"Qi","year":"2015","journal-title":"J.\u00a0Neurosci. Methods"},{"key":"10.1016\/j.neuroimage.2019.116207_bib67","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1016\/j.neuroimage.2010.01.019","article-title":"Identifying population differences in whole-brain structural networks: a machine learning approach","volume":"50","author":"Robinson","year":"2010","journal-title":"Neuroimage"},{"issue":"4","key":"10.1016\/j.neuroimage.2019.116207_bib68","doi-asserted-by":"crossref","first-page":"1553","DOI":"10.1007\/s00429-019-01856-2","article-title":"Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution","volume":"224","author":"Sarubbo","year":"2019","journal-title":"Brain Struct. Funct."},{"key":"10.1016\/j.neuroimage.2019.116207_bib69","doi-asserted-by":"crossref","DOI":"10.1002\/nbm.3787","article-title":"Can increased spatial resolution solve the crossing fiber problem for diffusion MRI?","volume":"30","author":"Schilling","year":"2017","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2019.116207_bib70","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neuroimage.2018.10.029","article-title":"Limits to anatomical accuracy of diffusion tractography using modern approaches","volume":"185","author":"Schilling","year":"2019","journal-title":"Neuroimage"},{"year":"2009","series-title":"Fiber Pathways of the Brain","author":"Schmahmann","key":"10.1016\/j.neuroimage.2019.116207_bib71"},{"key":"10.1016\/j.neuroimage.2019.116207_bib72","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1002\/j.1538-7305.1948.tb00917.x","article-title":"A\u00a0mathematical theory of communication","volume":"27","author":"Shannon","year":"1948","journal-title":"Bell Syst. Tech. J."},{"key":"10.1016\/j.neuroimage.2019.116207_bib73","doi-asserted-by":"crossref","first-page":"2565","DOI":"10.1093\/cercor\/bhr039","article-title":"Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis","volume":"21","author":"Shu","year":"2011","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.neuroimage.2019.116207_bib74","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.biopsych.2010.03.035","article-title":"Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach","volume":"68","author":"Skudlarski","year":"2010","journal-title":"Biol. Psychiatry"},{"issue":"1","key":"10.1016\/j.neuroimage.2019.116207_bib75","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1109\/42.668698","article-title":"A\u00a0nonparametric method for automatic correction of intensity nonuniformity in mri data","volume":"17","author":"Sled","year":"1998","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"Suppl. 1","key":"10.1016\/j.neuroimage.2019.116207_bib76","doi-asserted-by":"crossref","first-page":"S208","DOI":"10.1016\/j.neuroimage.2004.07.051","article-title":"Advances in functional and structural MR image analysis and implementation as FSL","volume":"23","author":"Smith","year":"2004","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib77","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.neuroimage.2013.05.057","article-title":"Advances in diffusion MRI acquisition and processing in the human connectome project","volume":"80","author":"Sotiropoulos","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib78","doi-asserted-by":"crossref","first-page":"e42","DOI":"10.1371\/journal.pcbi.0010042","article-title":"The human connectome: a structural description of the human brain","volume":"1","author":"Sporns","year":"2005","journal-title":"PLoS Comput. Biol."},{"key":"10.1016\/j.neuroimage.2019.116207_bib79","doi-asserted-by":"crossref","first-page":"1447","DOI":"10.1002\/mrm.20488","article-title":"Formalin fixation alters water diffusion coefficient magnitude but not anisotropy in infarcted brain","volume":"53","author":"Sun","year":"2005","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116207_bib80","doi-asserted-by":"crossref","first-page":"16574","DOI":"10.1073\/pnas.1405672111","article-title":"Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited","volume":"111","author":"Thomas","year":"2014","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"10.1016\/j.neuroimage.2019.116207_bib81","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1038\/nrn2012","article-title":"Towards multimodal atlases of the human brain","volume":"7","author":"Toga","year":"2006","journal-title":"Nat. Rev. Neurosci."},{"key":"10.1016\/j.neuroimage.2019.116207_bib82","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1002\/ima.22005","article-title":"MRtrix: diffusion tractography in crossing fiber regions","volume":"22","author":"Tournier","year":"2012","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"10.1016\/j.neuroimage.2019.116207_bib83","doi-asserted-by":"crossref","first-page":"3064","DOI":"10.1002\/hbm.22828","article-title":"Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome","volume":"36","author":"van den Heuvel","year":"2015","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2019.116207_bib84","doi-asserted-by":"crossref","first-page":"468","DOI":"10.1111\/j.1749-6632.2002.tb07588.x","article-title":"Surface-based atlases of cerebellar cortex in the human, macaque, and mouse","volume":"978","author":"Van Essen","year":"2002","journal-title":"Ann. N. Y. Acad. Sci."},{"key":"10.1016\/j.neuroimage.2019.116207_bib85","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.neuron.2007.10.015","article-title":"Surface-based and probabilistic atlases of primate cerebral cortex","volume":"56","author":"Van Essen","year":"2007","journal-title":"Neuron"},{"key":"10.1016\/j.neuroimage.2019.116207_bib86","series-title":"Diffusion MRI","first-page":"337","article-title":"Mapping connections in humans and non-human primates","author":"Van Essen","year":"2014"},{"key":"10.1016\/j.neuroimage.2019.116207_bib87","series-title":"Mathematics and Visualization","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1007\/978-3-319-28588-7_19","article-title":"Reliability of structural connectivity examined with four different diffusion reconstruction methods at two different spatial and angular resolutions","author":"Villalon-Reina","year":"2016"},{"key":"10.1016\/j.neuroimage.2019.116207_bib88","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.neuroimage.2016.01.011","article-title":"Trade-off between angular and spatial resolutions in in vivo fiber tractography","volume":"129","author":"Vos","year":"2016","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib89","doi-asserted-by":"crossref","first-page":"1204","DOI":"10.1523\/JNEUROSCI.4085-10.2011","article-title":"Discrete neuroanatomical networks are associated with specific cognitive abilities in old age","volume":"31","author":"Wen","year":"2011","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2019.116207_bib90","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1016\/S1053-8119(03)00044-2","article-title":"Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging","volume":"19","author":"Wiegell","year":"2003","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib91","doi-asserted-by":"crossref","first-page":"S173","DOI":"10.1016\/j.neuroimage.2008.10.055","article-title":"Bayesian analysis of neuroimaging data in FSL","volume":"45","author":"Woolrich","year":"2009","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib92","article-title":"How does B-value affect HARDI reconstruction using clinical diffusion MRI data?","volume":"10","author":"Xie","year":"2015","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2019.116207_bib93","doi-asserted-by":"crossref","first-page":"1055","DOI":"10.1016\/j.neuroimage.2012.01.068","article-title":"Connectivity differences in brain networks","volume":"60","author":"Zalesky","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib94","doi-asserted-by":"crossref","first-page":"1197","DOI":"10.1016\/j.neuroimage.2010.06.041","article-title":"Network-based statistic: identifying differences in brain networks","volume":"53","author":"Zalesky","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.116207_bib95","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.biopsych.2010.08.022","article-title":"Disrupted axonal fiber connectivity in schizophrenia","volume":"69","author":"Zalesky","year":"2011","journal-title":"Biol. Psychiatry"},{"key":"10.1016\/j.neuroimage.2019.116207_bib96","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/42.906424","article-title":"Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm","volume":"20","author":"Zhang","year":"2001","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116207_bib97","first-page":"1","article-title":"HOW do spatial and angular resolution affect brain connectivity maps from diffusion MRI?","author":"Zhan","year":"2012","journal-title":"Proc. IEEE Int. Symp. Biomed. Imag."},{"key":"10.1016\/j.neuroimage.2019.116207_bib98","doi-asserted-by":"crossref","first-page":"1357","DOI":"10.1016\/j.neuroimage.2009.09.057","article-title":"How does angular resolution affect diffusion imaging measures?","volume":"49","author":"Zhan","year":"2010","journal-title":"Neuroimage"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919307980?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919307980?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,8]],"date-time":"2022-07-08T16:22:56Z","timestamp":1657297376000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811919307980"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":98,"alternative-id":["S1053811919307980"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.116207","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Validation of structural brain connectivity networks: The impact of scanning parameters","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.116207","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc.","name":"copyright","label":"Copyright"}],"article-number":"116207"}}