{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:55:18Z","timestamp":1740106518308,"version":"3.37.3"},"reference-count":75,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,11,1]],"date-time":"2019-11-01T00:00:00Z","timestamp":1572566400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000065","name":"National Institute of Neurological Disorders and Stroke","doi-asserted-by":"publisher","award":["R01NS082226"],"id":[{"id":"10.13039\/100000065","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000070","name":"National Institute of Biomedical Imaging and Bioengineering","doi-asserted-by":"publisher","award":["R01EB016629"],"id":[{"id":"10.13039\/100000070","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100004897","name":"Pennsylvania Department of Health","doi-asserted-by":"publisher","award":["4100061184"],"id":[{"id":"10.13039\/100004897","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2019,11]]},"DOI":"10.1016\/j.neuroimage.2019.116090","type":"journal-article","created":{"date-parts":[[2019,8,10]],"date-time":"2019-08-10T10:50:47Z","timestamp":1565434247000},"page":"116090","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["A systematic optimization of 19F MR image acquisition to detect macrophage invasion into an ECM hydrogel implanted in the stroke-damaged brain"],"prefix":"10.1016","volume":"202","author":[{"given":"Harmanvir","family":"Ghuman","sequence":"first","affiliation":[]},{"given":"T. Kevin","family":"Hitchens","sequence":"additional","affiliation":[]},{"given":"Michel","family":"Modo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2019.116090_bib1","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1038\/nri3531","article-title":"Tracking immune cells in vivo using magnetic resonance imaging","volume":"13","author":"Ahrens","year":"2013","journal-title":"Nat. Rev. Immunol."},{"key":"10.1016\/j.neuroimage.2019.116090_bib2","doi-asserted-by":"crossref","first-page":"983","DOI":"10.1038\/nbt1121","article-title":"In vivo imaging platform for tracking immunotherapeutic cells","volume":"23","author":"Ahrens","year":"2005","journal-title":"Nat. Biotechnol."},{"key":"10.1016\/j.neuroimage.2019.116090_bib3","doi-asserted-by":"crossref","first-page":"229","DOI":"10.2144\/000113652","article-title":"Rapid quantification of inflammation in tissue samples using perfluorocarbon emulsion and fluorine-19 nuclear magnetic resonance","volume":"50","author":"Ahrens","year":"2011","journal-title":"Biotechniques"},{"key":"10.1016\/j.neuroimage.2019.116090_bib4","doi-asserted-by":"crossref","first-page":"860","DOI":"10.1002\/nbm.2948","article-title":"In vivo MRI cell tracking using perfluorocarbon probes and fluorine-19 detection","volume":"26","author":"Ahrens","year":"2013","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2019.116090_bib5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11307-017-1146-y","article-title":"Correction for partial volume effect is a must, not a luxury, to fully exploit the potential of quantitative PET imaging in clinical oncology","volume":"20","author":"Alavi","year":"2018","journal-title":"Mol. Imaging Biol. : MIB. Off. Publ. Acad. Mol. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116090_bib6","doi-asserted-by":"crossref","DOI":"10.1088\/1742-6596\/886\/1\/012001","article-title":"Calculation of optimal parameters for 19F MRI","volume":"886","author":"Anisimov","year":"2017","journal-title":"J.\u00a0Phys. Conf. Ser."},{"key":"10.1016\/j.neuroimage.2019.116090_bib7","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.brainres.2007.01.111","article-title":"Multi-modal characterisation of the neocortical clip model of focal cerebral ischaemia by MRI, behaviour and immunohistochemistry","volume":"1145","author":"Ashioti","year":"2007","journal-title":"Brain Res."},{"key":"10.1016\/j.neuroimage.2019.116090_bib8","doi-asserted-by":"crossref","first-page":"S333","DOI":"10.1097\/00003086-199910001-00032","article-title":"Naturally occurring extracellular matrix as a scaffold for musculoskeletal repair","author":"Badylak","year":"1999","journal-title":"Clin. Orthop. Relat. Res."},{"key":"10.1016\/j.neuroimage.2019.116090_bib9","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/j.trim.2003.12.016","article-title":"Xenogeneic extracellular matrix as a scaffold for tissue reconstruction","volume":"12","author":"Badylak","year":"2004","journal-title":"Transpl. Immunol."},{"key":"10.1016\/j.neuroimage.2019.116090_bib10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.actbio.2008.09.013","article-title":"Extracellular matrix as a biological scaffold material: structure and function","volume":"5","author":"Badylak","year":"2009","journal-title":"Acta Biomater."},{"key":"10.1016\/j.neuroimage.2019.116090_bib11","doi-asserted-by":"crossref","first-page":"2311","DOI":"10.1118\/1.598745","article-title":"Estimation of the depth-dependent component of the point spread function of SPECT","volume":"26","author":"Beekman","year":"1999","journal-title":"Med. Phys."},{"key":"10.1016\/j.neuroimage.2019.116090_bib12","doi-asserted-by":"crossref","first-page":"1440","DOI":"10.1038\/nprot.2009.156","article-title":"Attachment of stem cells to scaffold particles for intra-cerebral transplantation","volume":"4","author":"Bible","year":"2009","journal-title":"Nat. Protoc."},{"key":"10.1016\/j.neuroimage.2019.116090_bib13","doi-asserted-by":"crossref","first-page":"2858","DOI":"10.1016\/j.biomaterials.2011.12.033","article-title":"Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI","volume":"33","author":"Bible","year":"2012","journal-title":"Biomaterials"},{"key":"10.1016\/j.neuroimage.2019.116090_bib14","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0029040","article-title":"In vivo tracking of human neural stem cells with 19F magnetic resonance imaging","volume":"6","author":"Boehm-Sturm","year":"2011","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2019.116090_bib15","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1093\/ehjci\/jev008","article-title":"Monocyte imaging after myocardial infarction with 19F MRI at 3 T: a pilot study in explanted porcine hearts","volume":"16","author":"Bonner","year":"2015","journal-title":"Eur Heart J Cardiovasc Imaging"},{"key":"10.1016\/j.neuroimage.2019.116090_bib16","doi-asserted-by":"crossref","DOI":"10.1080\/2162402X.2016.1143996","article-title":"(19)F-MRI for monitoring human NK cells in vivo","volume":"5","author":"Bouchlaka","year":"2016","journal-title":"OncoImmunology"},{"key":"10.1016\/j.neuroimage.2019.116090_bib17","first-page":"1057","article-title":"The effect of variation in slice thickness and interslice gap on MR lesion detection","volume":"8","author":"Bradley","year":"1987","journal-title":"AJNR Am J Neuroradiol"},{"key":"10.1016\/j.neuroimage.2019.116090_bib18","doi-asserted-by":"crossref","first-page":"510","DOI":"10.3389\/fimmu.2014.00510","article-title":"Rethinking regenerative medicine: a macrophage-centered approach","volume":"5","author":"Brown","year":"2014","journal-title":"Front. Immunol."},{"key":"10.1016\/j.neuroimage.2019.116090_bib19","doi-asserted-by":"crossref","first-page":"945","DOI":"10.1038\/nbt0805-945","article-title":"Hot spot MRI emerges from the background","volume":"23","author":"Bulte","year":"2005","journal-title":"Nat. Biotechnol."},{"key":"10.1016\/j.neuroimage.2019.116090_bib20","first-page":"1767","article-title":"Imaging macrophage activity in the brain by using ultrasmall particles of iron oxide","volume":"21","author":"Bulte","year":"2000","journal-title":"AJNR Am J Neuroradiol"},{"key":"10.1016\/j.neuroimage.2019.116090_bib21","doi-asserted-by":"crossref","first-page":"931","DOI":"10.1002\/mrm.22881","article-title":"19F-lanthanide complexes with increased sensitivity for 19F-MRI: optimization of the MR acquisition","volume":"66","author":"Chalmers","year":"2011","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib22","doi-asserted-by":"crossref","first-page":"2263","DOI":"10.1002\/mrm.26317","article-title":"Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla","volume":"77","author":"Colotti","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib23","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1097\/00004728-199103000-00021","article-title":"Contrast, resolution, and detectability in MR imaging","volume":"15","author":"Constable","year":"1991","journal-title":"J.\u00a0Comput. Assist. Tomogr."},{"key":"10.1016\/j.neuroimage.2019.116090_bib24","doi-asserted-by":"crossref","first-page":"3233","DOI":"10.1016\/j.biomaterials.2011.01.057","article-title":"An overview of tissue and whole organ decellularization processes","volume":"32","author":"Crapo","year":"2011","journal-title":"Biomaterials"},{"key":"10.1016\/j.neuroimage.2019.116090_bib25","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1161\/CIRCULATIONAHA.107.737890","article-title":"In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging","volume":"118","author":"Flogel","year":"2008","journal-title":"Circulation"},{"key":"10.1016\/j.neuroimage.2019.116090_bib26","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1002\/mrm.26400","article-title":"Application of dual (19) F and iron cellular MRI agents to track the infiltration of immune cells to the site of a rejected stem cell transplant","volume":"78","author":"Gaudet","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib27","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.actbio.2017.09.011","article-title":"Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume","volume":"63","author":"Ghuman","year":"2017","journal-title":"Acta Biomater."},{"key":"10.1016\/j.neuroimage.2019.116090_bib28","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.biomaterials.2016.03.014","article-title":"ECM hydrogel for the treatment of stroke: characterization of the host cell infiltrate","volume":"91","author":"Ghuman","year":"2016","journal-title":"Biomaterials"},{"key":"10.1016\/j.neuroimage.2019.116090_bib29","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.actbio.2018.09.020","article-title":"Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke","volume":"80","author":"Ghuman","year":"2018","journal-title":"Acta Biomater."},{"key":"10.1016\/j.neuroimage.2019.116090_bib30","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1002\/mrm.25437","article-title":"Balanced UTE-SSFP for 19F MR imaging of complex spectra","volume":"74","author":"Goette","year":"2015","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib31","doi-asserted-by":"crossref","first-page":"488","DOI":"10.1002\/jmri.24812","article-title":"Improved quantitative (19) F MR molecular imaging with flip angle calibration and B1 -mapping compensation","volume":"42","author":"Goette","year":"2015","journal-title":"J.\u00a0Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116090_bib32","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/0730-725X(91)90103-S","article-title":"Parameter optimization and calibration of 19F magnetic resonance imaging at 1.5 Tesla","volume":"9","author":"Gong","year":"1991","journal-title":"Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116090_bib33","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1002\/mrm.1910340618","article-title":"The Rician distribution of noisy MRI data","volume":"34","author":"Gudbjartsson","year":"1995","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib34","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1002\/mrm.25120","article-title":"Combining perfluorocarbon and superparamagnetic iron-oxide cell labeling for improved and expanded applications of cellular MRI","volume":"73","author":"Hitchens","year":"2015","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib35","doi-asserted-by":"crossref","first-page":"1144","DOI":"10.1002\/mrm.22702","article-title":"19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells","volume":"65","author":"Hitchens","year":"2011","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib36","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1097\/00004728-197906000-00001","article-title":"Quantitation in positron emission computed tomography: 1. Effect of object size","volume":"3","author":"Hoffman","year":"1979","journal-title":"J.\u00a0Comput. Assist. Tomogr."},{"first-page":"17","year":"1994","series-title":"Accuracy (Trueness and Precision) of Measurement Methods and Results - Part 1: General Principles and Definitions","key":"10.1016\/j.neuroimage.2019.116090_bib37"},{"key":"10.1016\/j.neuroimage.2019.116090_bib38","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1002\/nbm.3059","article-title":"Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity","volume":"27","author":"Jacoby","year":"2014","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2019.116090_bib39","article-title":"Fluorous-soluble metal chelate for sensitive fluorine-19 magnetic resonance imaging nanoemulsion probes","author":"Jahromi","year":"2018","journal-title":"ACS Nano"},{"key":"10.1016\/j.neuroimage.2019.116090_bib40","doi-asserted-by":"crossref","first-page":"2832","DOI":"10.1021\/ja077388j","article-title":"Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection","volume":"130","author":"Janjic","year":"2008","journal-title":"J.\u00a0Am. Chem. Soc."},{"key":"10.1016\/j.neuroimage.2019.116090_bib41","doi-asserted-by":"crossref","first-page":"636","DOI":"10.1038\/labinvest.2012.7","article-title":"Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI","volume":"92","author":"Kadayakkara","year":"2012","journal-title":"Lab. Investig."},{"key":"10.1016\/j.neuroimage.2019.116090_bib42","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1097\/00004728-198406000-00028","article-title":"Analysis of emission tomographic scan data: limitations imposed by resolution and background","volume":"8","author":"Kessler","year":"1984","journal-title":"J.\u00a0Comput. Assist. Tomogr."},{"key":"10.1016\/j.neuroimage.2019.116090_bib43","doi-asserted-by":"crossref","first-page":"1116","DOI":"10.1002\/mrm.22877","article-title":"Simultaneous dual-nuclei imaging for motion corrected detection and quantification of 19F imaging agents","volume":"66","author":"Keupp","year":"2011","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib44","doi-asserted-by":"crossref","first-page":"662","DOI":"10.1038\/nmat4585","article-title":"Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging","volume":"15","author":"Kislukhin","year":"2016","journal-title":"Nat. Mater."},{"key":"10.1016\/j.neuroimage.2019.116090_bib45","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1002\/jmri.1880040416","article-title":"In vivo fluorine-19 MR imaging: relaxation enhancement with Gd-DTPA","volume":"4","author":"Lee","year":"1994","journal-title":"J.\u00a0Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116090_bib46","doi-asserted-by":"crossref","DOI":"10.1002\/nbm.3776","article-title":"Comparison of different compressed sensing algorithms for low SNR (19) F MRI applications-Imaging of transplanted pancreatic islets and cells labeled with perfluorocarbons","volume":"30","author":"Liang","year":"2017","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2019.116090_bib47","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.regen.2018.03.004","article-title":"Effect of source animal age upon macrophage response to extracellular matrix biomaterials","volume":"1","author":"LoPresti","year":"2018","journal-title":"J\u00a0Immunol Regen Med"},{"key":"10.1016\/j.neuroimage.2019.116090_bib48","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/0168-9002(89)91258-8","article-title":"Comparison among methods for calculating FWHM","volume":"A283","author":"Markevich","year":"1989","journal-title":"Nucl. Instrum. Methods Phys. Res."},{"key":"10.1016\/j.neuroimage.2019.116090_bib49","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.actbio.2015.08.040","article-title":"Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity","volume":"27","author":"Massensini","year":"2015","journal-title":"Acta Biomater."},{"key":"10.1016\/j.neuroimage.2019.116090_bib50","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1002\/jmri.24347","article-title":"Optimization of rapid acquisition with relaxation enhancement (RARE) pulse sequence parameters for (1)(9)F-MRI studies","volume":"40","author":"Mastropietro","year":"2014","journal-title":"J.\u00a0Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116090_bib51","doi-asserted-by":"crossref","first-page":"1033","DOI":"10.1016\/j.biomaterials.2012.10.062","article-title":"Hydrogels derived from central nervous system extracellular matrix","volume":"34","author":"Medberry","year":"2013","journal-title":"Biomaterials"},{"key":"10.1016\/j.neuroimage.2019.116090_bib52","doi-asserted-by":"crossref","first-page":"2225","DOI":"10.1002\/mrm.25370","article-title":"Revealing signal from noisy (19) F MR images by chemical shift artifact correction","volume":"73","author":"Meissner","year":"2015","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib53","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1162\/15353500200505145","article-title":"Cellular MR imaging","volume":"4","author":"Modo","year":"2005","journal-title":"Mol. Imaging"},{"key":"10.1016\/j.neuroimage.2019.116090_bib54","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/S0165-0270(00)00329-0","article-title":"Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion","volume":"104","author":"Modo","year":"2000","journal-title":"J.\u00a0Neurosci. Methods"},{"key":"10.1016\/j.neuroimage.2019.116090_bib55","doi-asserted-by":"crossref","first-page":"2866","DOI":"10.1007\/s00330-002-1428-9","article-title":"Fast and ultrafast non-echo-planar MR imaging techniques","volume":"12","author":"Nitz","year":"2002","journal-title":"Eur. Radiol."},{"key":"10.1016\/j.neuroimage.2019.116090_bib56","doi-asserted-by":"crossref","first-page":"1084","DOI":"10.1177\/1535370216650293","article-title":"Monocytes and macrophages in tissue repair: implications for immunoregenerative biomaterial design","volume":"241","author":"Ogle","year":"2016","journal-title":"Exp. Biol. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib57","doi-asserted-by":"crossref","first-page":"1140","DOI":"10.6009\/jjrt.KJ00003943075","article-title":"[Effects of slice thickness and matrix size on MRI for signal detection]","volume":"61","author":"Ogura","year":"2005","journal-title":"Nippon. Hoshasen Gijutsu Gakkai Zasshi"},{"key":"10.1016\/j.neuroimage.2019.116090_bib58","first-page":"1647","article-title":"19F magnetic resonance imaging for stem\/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons","volume":"21","author":"Partlow","year":"2007","journal-title":"FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol."},{"key":"10.1016\/j.neuroimage.2019.116090_bib59","doi-asserted-by":"crossref","first-page":"064301","DOI":"10.1118\/1.4800806","article-title":"Resolution modeling in PET imaging: theory, practice, benefits, and pitfalls","volume":"40","author":"Rahmim","year":"2013","journal-title":"Med. Phys."},{"key":"10.1016\/j.neuroimage.2019.116090_bib60","doi-asserted-by":"crossref","first-page":"548","DOI":"10.1002\/mrm.1910050605","article-title":"19F magnetic resonance imaging of the reticuloendothelial system","volume":"5","author":"Ratner","year":"1987","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib61","doi-asserted-by":"crossref","first-page":"733","DOI":"10.1002\/mrm.1910380509","article-title":"Measurement of the point spread function in MRI using constant time imaging","volume":"38","author":"Robson","year":"1997","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib62","doi-asserted-by":"crossref","first-page":"1056","DOI":"10.1002\/mrm.24341","article-title":"Boosting (19) F MRI-SNR efficient detection of paramagnetic contrast agents using ultrafast sequences","volume":"69","author":"Schmid","year":"2013","journal-title":"Magn. Reson. Med."},{"year":"1997","series-title":"The Scientist and Engineer\u2019s Guide to Digital Signal Processing","author":"Smith","key":"10.1016\/j.neuroimage.2019.116090_bib63"},{"key":"10.1016\/j.neuroimage.2019.116090_bib64","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1002\/mrm.21352","article-title":"Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model","volume":"58","author":"Srinivas","year":"2007","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib65","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.jneumeth.2013.06.003","article-title":"3D reconstruction of 2D fluorescence histology images and registration with in vivo MR images: application in a rodent stroke model","volume":"219","author":"Stille","year":"2013","journal-title":"J.\u00a0Neurosci. Methods"},{"key":"10.1016\/j.neuroimage.2019.116090_bib66","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0163704","article-title":"Probe-specific procedure to estimate sensitivity and detection limits for 19F magnetic resonance imaging","volume":"11","author":"Taylor","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2019.116090_bib67","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1002\/wnan.1163","article-title":"19F magnetic resonance imaging of endogenous macrophages in inflammation","volume":"4","author":"Temme","year":"2012","journal-title":"Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol."},{"key":"10.1016\/j.neuroimage.2019.116090_bib68","doi-asserted-by":"crossref","first-page":"8524","DOI":"10.1021\/ja503270n","article-title":"A\u00a0superfluorinated molecular probe for highly sensitive in vivo(19)F-MRI","volume":"136","author":"Tirotta","year":"2014","journal-title":"J.\u00a0Am. Chem. Soc."},{"key":"10.1016\/j.neuroimage.2019.116090_bib69","doi-asserted-by":"crossref","first-page":"1687","DOI":"10.1089\/ten.tea.2008.0419","article-title":"Macrophage participation in the degradation and remodeling of extracellular matrix scaffolds","volume":"15","author":"Valentin","year":"2009","journal-title":"Tissue Eng. A"},{"key":"10.1016\/j.neuroimage.2019.116090_bib70","doi-asserted-by":"crossref","first-page":"1280","DOI":"10.1038\/srep01280","article-title":"Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F\/1H MRI","volume":"3","author":"Waiczies","year":"2013","journal-title":"Sci. Rep."},{"key":"10.1016\/j.neuroimage.2019.116090_bib71","doi-asserted-by":"crossref","first-page":"9808","DOI":"10.1038\/s41598-017-09622-2","article-title":"Enhanced fluorine-19 MRI sensitivity using a cryogenic radiofrequency probe: technical developments and ex vivo demonstration in a mouse model of neuroinflammation","volume":"7","author":"Waiczies","year":"2017","journal-title":"Sci. Rep."},{"key":"10.1016\/j.neuroimage.2019.116090_bib72","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0077089","article-title":"On the definition of signal-to-noise ratio and contrast-to-noise ratio for FMRI data","volume":"8","author":"Welvaert","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2019.116090_bib73","doi-asserted-by":"crossref","first-page":"1683","DOI":"10.1002\/mrm.24414","article-title":"Accelerated fluorine-19 MRI cell tracking using compressed sensing","volume":"69","author":"Zhong","year":"2013","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.116090_bib74","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0140238","article-title":"In vivo quantification of inflammation in experimental autoimmune encephalomyelitis rats using fluorine-19 magnetic resonance imaging reveals immune cell recruitment outside the nervous system","volume":"10","author":"Zhong","year":"2015","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2019.116090_bib75","article-title":"In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging","volume":"8","author":"Zhong","year":"2013","journal-title":"PLoS One"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919306810?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919306810?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,1,31]],"date-time":"2020-01-31T17:53:31Z","timestamp":1580493211000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811919306810"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,11]]},"references-count":75,"alternative-id":["S1053811919306810"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.116090","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2019,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A systematic optimization of 19F MR image acquisition to detect macrophage invasion into an ECM hydrogel implanted in the stroke-damaged brain","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.116090","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"116090"}}