{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,2]],"date-time":"2025-04-02T13:44:03Z","timestamp":1743601443350,"version":"3.37.3"},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,5,1]],"date-time":"2019-05-01T00:00:00Z","timestamp":1556668800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100008392","name":"Danish Medical Research Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100008392","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100008340","name":"Elsass Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100008340","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2019,5]]},"DOI":"10.1016\/j.neuroimage.2019.02.054","type":"journal-article","created":{"date-parts":[[2019,2,25]],"date-time":"2019-02-25T17:13:17Z","timestamp":1551114797000},"page":"350-360","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["The development of functional and directed corticomuscular connectivity during tonic ankle muscle contraction across childhood and adolescence"],"prefix":"10.1016","volume":"191","author":[{"given":"Meaghan Elizabeth","family":"Spedden","sequence":"first","affiliation":[]},{"given":"Peter","family":"Jensen","sequence":"additional","affiliation":[]},{"given":"Cecilie Ulb\u00e6k","family":"Terkildsen","sequence":"additional","affiliation":[]},{"given":"Nicole Jacqueline","family":"Jensen","sequence":"additional","affiliation":[]},{"given":"David M.","family":"Halliday","sequence":"additional","affiliation":[]},{"given":"Jesper","family":"Lundbye-Jensen","sequence":"additional","affiliation":[]},{"given":"Jens Bo","family":"Nielsen","sequence":"additional","affiliation":[]},{"given":"Svend Sparre","family":"Geertsen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.neuroimage.2019.02.054_bib1","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1007\/s00429-012-0475-5","article-title":"Predictions not commands: active inference in the motor system","volume":"218","author":"Adams","year":"2013","journal-title":"Brain Struct. Funct."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib2","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1016\/j.neuroimage.2017.07.013","article-title":"Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking","volume":"159","author":"Artoni","year":"2017","journal-title":"Neuroimage"},{"issue":"Pt 3","key":"10.1016\/j.neuroimage.2019.02.054_bib3","doi-asserted-by":"crossref","first-page":"931","DOI":"10.1113\/jphysiol.2002.029553","article-title":"The effect of diazepam on motor cortical oscillations and corticomuscular coherence studied in man","volume":"546","author":"Baker","year":"2003","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib4","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1007\/s002210050825","article-title":"The role of synchrony and oscillations in the motor output","volume":"128","author":"Baker","year":"1999","journal-title":"Exp. Brain Res."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib5","doi-asserted-by":"crossref","first-page":"855","DOI":"10.3389\/fnhum.2013.00855","article-title":"The potential of corticomuscular and intermuscular coherence for research on human motor control","volume":"7","author":"Boonstra","year":"2013","journal-title":"Front. Hum. Neurosci."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib6","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1113\/jphysiol.1991.sp018389","article-title":"Correlation between the discharges of motor units recorded from the same and from different finger muscles in man","volume":"432","author":"Bremner","year":"1991","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib7","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/S0165-0270(03)00129-8","article-title":"Spectral phase estimates in the setting of multidirectional coupling","volume":"127","author":"Cassidy","year":"2003","journal-title":"J.\u00a0Neurosci. Methods"},{"key":"10.1016\/j.neuroimage.2019.02.054_bib8","doi-asserted-by":"crossref","first-page":"917","DOI":"10.1113\/jphysiol.1995.sp021104","article-title":"Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man","volume":"489","author":"Conway","year":"1995","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib9","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1113\/jphysiol.1991.sp018391","article-title":"Central nervous pathways underlying synchronization of human motor unit firing studied during voluntary contractions","volume":"432","author":"Datta","year":"1991","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib10","doi-asserted-by":"crossref","first-page":"1583","DOI":"10.1152\/jn.00320.2013","article-title":"Developmental improvements in dynamic control of fingertip forces last throughout childhood and into adolescence","volume":"110","author":"Dayanidhi","year":"2013","journal-title":"J.\u00a0Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib11","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1113\/jphysiol.1993.sp019851","article-title":"The frequency content of common synaptic inputs to motoneurones studied during voluntary isometric contraction in man","volume":"470","author":"Farmer","year":"1993","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib12","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1113\/jphysiol.2006.123174","article-title":"Changes in EMG coherence between long and short thumb abductor muscles during human development","volume":"579","author":"Farmer","year":"2007","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib13","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1016\/j.neuron.2011.10.006","article-title":"Computational mechanisms of sensorimotor control","volume":"72","author":"Franklin","year":"2011","journal-title":"Neuron"},{"key":"10.1016\/j.neuroimage.2019.02.054_bib14","doi-asserted-by":"crossref","first-page":"792","DOI":"10.1016\/j.neuroimage.2010.01.077","article-title":"Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound","volume":"51","author":"Gaetz","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.02.054_bib15","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1111\/j.1469-7793.2000.00623.x","article-title":"Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography","volume":"527","author":"Gross","year":"2000","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib60","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fnhum.2012.00258","article-title":"Beta- and gamma-range human lower limb corticomuscular coherence","volume":"6","author":"Gwin","year":"2012","journal-title":"Front. Hum. Neurosci."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib16","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1142\/S0219635215300127","article-title":"Nonparametric directionality measures for time series and point process data","volume":"14","author":"Halliday","year":"2015","journal-title":"J.\u00a0Integr. Neurosci."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib17","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1016\/S0304-3940(97)00964-6","article-title":"Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans","volume":"241","author":"Halliday","year":"1998","journal-title":"Neurosci. Lett."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib18","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/S0079-6107(96)00009-0","article-title":"A\u00a0framework for the analysis of mixed time series\/point process data-theory and application to the study of physiological tremor, single motor unit discharges and electromyograms","volume":"64","author":"Halliday","year":"1995","journal-title":"Prog. Biophys. Mol. Biol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib19","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.jneumeth.2016.05.008","article-title":"Non-parametric directionality analysis \u2013 extension for removal of a single common predictor and application to time series","volume":"268","author":"Halliday","year":"2016","journal-title":"J.\u00a0Neurosci. Methods"},{"key":"10.1016\/j.neuroimage.2019.02.054_bib20","doi-asserted-by":"crossref","first-page":"934","DOI":"10.1152\/jn.00082.2005","article-title":"Reduction of common synaptic drive to ankle dorsiflexor motoneurons during walking in patients with spinal cord lesion","volume":"94","author":"Hansen","year":"2005","journal-title":"J.\u00a0Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib21","doi-asserted-by":"crossref","first-page":"1266","DOI":"10.1152\/jn.2001.86.3.1266","article-title":"Synchronization of lower limb motor unit activity during walking in human subjects","volume":"86","author":"Hansen","year":"2001","journal-title":"J.\u00a0Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib22","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1113\/jphysiol.2004.071910","article-title":"The effect of transcranial magnetic stimulation and peripheral nerve stimulation on corticomuscular coherence in humans","volume":"561","author":"Hansen","year":"2004","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib23","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1007\/s00221-006-0730-1","article-title":"Modulation of soleus H-reflexes during gait in healthy children","volume":"178","author":"Hodapp","year":"2007","journal-title":"Exp. Brain Res."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib24","doi-asserted-by":"crossref","first-page":"517","DOI":"10.1016\/0028-3932(90)90031-I","article-title":"Morphometric study of human cerebral cortex development","volume":"28","author":"Huttenlocher","year":"1990","journal-title":"Neuropsychologia"},{"key":"10.1016\/j.neuroimage.2019.02.054_bib25","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/0006-8993(79)90349-4","article-title":"Synaptic density in human frontal cortex - developmental changes and effects of aging","volume":"163","author":"Huttenlocher","year":"1979","journal-title":"Brain Res."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib26","doi-asserted-by":"crossref","first-page":"3369","DOI":"10.1111\/j.1460-9568.2008.06277.x","article-title":"On the development of human corticospinal oscillations: age-related changes in EEG-EMG coherence and cumulant","volume":"27","author":"James","year":"2008","journal-title":"Eur. J. Neurosci."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib27","doi-asserted-by":"crossref","DOI":"10.1080\/00222895.2018.1563762","article-title":"Using corticomuscular and intermuscular coherence to assess cortical contribution to ankle plantar flexor activity during gait","author":"Jensen","year":"2019","journal-title":"J.\u00a0Mot. Behav."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib28","doi-asserted-by":"crossref","first-page":"815","DOI":"10.1016\/0959-4388(92)90139-C","article-title":"Sensory-motor coordination during grasping and manipulative actions","volume":"2","author":"Johansson","year":"1992","journal-title":"Curr. Opin. Neurobiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib29","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/S1388-2457(01)00722-2","article-title":"Effects of attention and precision of exerted force on beta range EEG-EMG synchronization during a maintained motor contraction task","volume":"113","author":"Kristeva-Feige","year":"2002","journal-title":"Clin. Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib30","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1016\/j.neuroimage.2007.03.025","article-title":"Beta-range cortical motor spectral power and corticomuscular coherence as a mechanism for effective corticospinal interaction during steady-state motor output","volume":"36","author":"Kristeva","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.02.054_bib31","doi-asserted-by":"crossref","first-page":"1963","DOI":"10.3174\/ajnr.A1742","article-title":"Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children","volume":"30","author":"Kumar","year":"2009","journal-title":"Am. J. Neuroradiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib32","doi-asserted-by":"crossref","first-page":"2036","DOI":"10.1016\/j.clinph.2014.02.006","article-title":"Ascending beta oscillation from finger muscle to sensorimotor cortex contributes to enhanced steady-state isometric contraction in humans","volume":"125","author":"Lim","year":"2014","journal-title":"Clin. Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib33","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/S1388-2457(99)00229-1","article-title":"Electroencephalographic measurement of motor cortex control of muscle activity in humans","volume":"111","author":"Mima","year":"2000","journal-title":"Clin. Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib34","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/0304-3940(94)90828-1","article-title":"Maturation of fastest afferent and efferent central and peripheral pathways: No evidence for a constancy of central conduction delays","volume":"166","author":"M\u00fcller","year":"1994","journal-title":"Neurosci. Lett."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib35","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/j.tics.2016.03.007","article-title":"A\u00a0new framework to explain sensorimotor beta oscillations","volume":"20","author":"Palmer","year":"2016","journal-title":"Trends Cognit. Sci."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib36","doi-asserted-by":"crossref","first-page":"1908","DOI":"10.1126\/science.283.5409.1908","article-title":"Structural maturation of neural pathways in children and adolescents: in vivo study","volume":"283","author":"Paus","year":"1999","journal-title":"Science"},{"key":"10.1016\/j.neuroimage.2019.02.054_bib37","doi-asserted-by":"crossref","first-page":"4387","DOI":"10.1113\/jphysiol.2010.195735","article-title":"Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait","volume":"588","author":"Petersen","year":"2010","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib38","doi-asserted-by":"crossref","first-page":"2443","DOI":"10.1113\/jphysiol.2012.227397","article-title":"The motor cortex drives the muscles during walking in human subjects","volume":"590","author":"Petersen","year":"2012","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib39","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1007\/s00221-001-0914-7","article-title":"Corticomuscular coherence in the 6-15 Hz band: is the cortex involved in the generation of physiologic tremor?","volume":"142","author":"Raethjen","year":"2002","journal-title":"Exp. Brain Res."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib40","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1113\/jphysiol.2005.089607","article-title":"Manipulation of peripheral neural feedback loops alters human corticomuscular coherence","volume":"566","author":"Riddle","year":"2005","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib41","doi-asserted-by":"crossref","first-page":"3401","DOI":"10.1152\/jn.1997.77.6.3401","article-title":"Cortical control of human motoneuron firing during isometric contraction","volume":"66","author":"Salenius","year":"1997","journal-title":"J.\u00a0Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib42","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1113\/jphysiol.1976.sp011635","article-title":"Short-term synchronization of intercostal motoneurone activity","volume":"263","author":"Sears","year":"1976","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib43","doi-asserted-by":"crossref","first-page":"3432649","DOI":"10.1155\/2018\/3432649","article-title":"Oscillatory corticospinal activity during static contraction of ankle muscles is reduced in healthy old versus young adults","volume":"2018","author":"Spedden","year":"2018","journal-title":"Neural Plast."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib44","doi-asserted-by":"crossref","first-page":"1516","DOI":"10.1523\/JNEUROSCI.3204-15.2016","article-title":"Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models","volume":"36","author":"Tan","year":"2016","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib45","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1016\/j.neuroimage.2018.09.018","article-title":"The developmental trajectory of sensorimotor cortical oscillations","volume":"184","author":"Trevarrow","year":"2019","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2019.02.054_bib46","doi-asserted-by":"crossref","first-page":"1379","DOI":"10.1152\/jn.00193.2011","article-title":"Between-subject variance in the magnitude of corticomuscular coherence during tonic isometric contraction of the tibialis anterior muscle in healthy young adults","volume":"106","author":"Ushiyama","year":"2011","journal-title":"J.\u00a0Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib47","doi-asserted-by":"crossref","first-page":"1086","DOI":"10.1152\/japplphysiol.00869.2009","article-title":"Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters","volume":"109","author":"Ushiyama","year":"2010","journal-title":"J.\u00a0Appl. Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib48","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.clinph.2016.11.025","article-title":"Individual difference in \u03b2-band corticomuscular coherence and its relation to force steadiness during isometric voluntary ankle dorsiflexion in healthy humans","volume":"128","author":"Ushiyama","year":"2017","journal-title":"Clin. Neurophysiol."},{"issue":"3","key":"10.1016\/j.neuroimage.2019.02.054_bib49","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1111\/j.1469-7793.1997.673bg.x","article-title":"Evidence from motoneurone synchronization for disynaptic pathways in the control of inspiratory motoneurones in the cat","volume":"503","author":"Vaughan","year":"1997","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib50","doi-asserted-by":"crossref","first-page":"1744","DOI":"10.1152\/jn.00296.2013","article-title":"Rectification of EMG in low force contractions improves detection of motor unit coherence in the beta-frequency band","volume":"110","author":"Ward","year":"2013","journal-title":"J.\u00a0Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib51","doi-asserted-by":"crossref","first-page":"1608","DOI":"10.1152\/jn.00629.2017","article-title":"Propagation of beta\/gamma rhythms in the cortico-basal ganglia circuits of the parkinsonian rat","volume":"119","author":"West","year":"2018","journal-title":"J.\u00a0Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib52","doi-asserted-by":"crossref","first-page":"746","DOI":"10.1152\/jn.00372.2013","article-title":"Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy","volume":"111","author":"Willerslev-Olsen","year":"2014","journal-title":"J.\u00a0Neurophysiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib53","doi-asserted-by":"crossref","first-page":"6616","DOI":"10.1523\/JNEUROSCI.0272-09.2009","article-title":"Renshaw cell recurrent inhibition improves physiological tremor by reducing corticomuscular coupling at 10 Hz","volume":"29","author":"Williams","year":"2009","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib54","doi-asserted-by":"crossref","first-page":"3789","DOI":"10.1113\/jphysiol.2011.211045","article-title":"Contributions of descending and ascending pathways to corticomuscular coherence in humans","volume":"589","author":"Witham","year":"2011","journal-title":"J.\u00a0Physiol."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib55","doi-asserted-by":"crossref","first-page":"3564","DOI":"10.1111\/j.1460-9568.2007.05942.x","article-title":"Modulation of human corticomuscular beta-range coherence with low-level static forces","volume":"26","author":"Witte","year":"2007","journal-title":"Eur. J. Neurosci."},{"key":"10.1016\/j.neuroimage.2019.02.054_bib56","doi-asserted-by":"crossref","DOI":"10.3389\/fnhum.2017.00155","article-title":"Dynamic increase in corticomuscular coherence during bilateral, cyclical ankle movements","volume":"11","author":"Yoshida","year":"2017","journal-title":"Front. Hum. Neurosci."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919301508?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919301508?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,3,21]],"date-time":"2020-03-21T03:11:49Z","timestamp":1584760309000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811919301508"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,5]]},"references-count":57,"alternative-id":["S1053811919301508"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.02.054","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2019,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The development of functional and directed corticomuscular connectivity during tonic ankle muscle contraction across childhood and adolescence","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.02.054","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}