{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:41:09Z","timestamp":1732038069631},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,1,23]],"date-time":"2019-01-23T00:00:00Z","timestamp":1548201600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000289","name":"CRUK","doi-asserted-by":"crossref","award":["C19212\/A16628","C19212\/A911376","C197\/A16465"],"id":[{"id":"10.13039\/501100000289","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2019,4]]},"DOI":"10.1016\/j.neuroimage.2019.01.027","type":"journal-article","created":{"date-parts":[[2019,1,11]],"date-time":"2019-01-11T14:10:28Z","timestamp":1547215828000},"page":"171-179","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":155,"special_numbering":"C","title":["Quantifying normal human brain metabolism using hyperpolarized [1\u201313C]pyruvate and magnetic resonance imaging"],"prefix":"10.1016","volume":"189","author":[{"given":"James T.","family":"Grist","sequence":"first","affiliation":[]},{"given":"Mary A.","family":"McLean","sequence":"additional","affiliation":[]},{"given":"Frank","family":"Riemer","sequence":"additional","affiliation":[]},{"given":"Rolf F.","family":"Schulte","sequence":"additional","affiliation":[]},{"given":"Surrin S.","family":"Deen","sequence":"additional","affiliation":[]},{"given":"Fulvio","family":"Zaccagna","sequence":"additional","affiliation":[]},{"given":"Ramona","family":"Woitek","sequence":"additional","affiliation":[]},{"given":"Charlie J.","family":"Daniels","sequence":"additional","affiliation":[]},{"given":"Joshua D.","family":"Kaggie","sequence":"additional","affiliation":[]},{"given":"Tomasz","family":"Matys","sequence":"additional","affiliation":[]},{"given":"Ilse","family":"Patterson","sequence":"additional","affiliation":[]},{"given":"Rhys","family":"Slough","sequence":"additional","affiliation":[]},{"given":"Andrew B.","family":"Gill","sequence":"additional","affiliation":[]},{"given":"Anita","family":"Chhabra","sequence":"additional","affiliation":[]},{"given":"Rose","family":"Eichenberger","sequence":"additional","affiliation":[]},{"given":"Marie-Christine","family":"Laurent","sequence":"additional","affiliation":[]},{"given":"Arnaud","family":"Comment","sequence":"additional","affiliation":[]},{"given":"Jonathan H.","family":"Gillard","sequence":"additional","affiliation":[]},{"given":"Alasdair J.","family":"Coles","sequence":"additional","affiliation":[]},{"given":"Damian J.","family":"Tyler","sequence":"additional","affiliation":[]},{"given":"Ian","family":"Wilkinson","sequence":"additional","affiliation":[]},{"given":"Bristi","family":"Basu","sequence":"additional","affiliation":[]},{"given":"David J.","family":"Lomas","sequence":"additional","affiliation":[]},{"given":"Martin J.","family":"Graves","sequence":"additional","affiliation":[]},{"given":"Kevin M.","family":"Brindle","sequence":"additional","affiliation":[]},{"given":"Ferdia A.","family":"Gallagher","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2019.01.027_bib1","doi-asserted-by":"crossref","first-page":"1028","DOI":"10.1016\/j.eururo.2017.07.022","article-title":"Hyperpolarized 1-[13C]-pyruvate Magnetic Resonance Imaging detects an early metabolic response to androgen ablation therapy in prostate cancer","volume":"72","author":"Aggarwal","year":"2017","journal-title":"Eur. Urol."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib2","doi-asserted-by":"crossref","first-page":"927","DOI":"10.1002\/nbm.1682","article-title":"Dynamic nuclear polarization polarizer for sterile use intent","volume":"24","author":"Ardenkjaer-Larsen","year":"2011","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib3","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.cpet.2013.10.006","article-title":"Brain: normal variations and benign findings in FDG PET\/CT imaging","volume":"14","author":"Berti","year":"2014","journal-title":"Pet. Clin."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib4","doi-asserted-by":"crossref","first-page":"1079","DOI":"10.1097\/00004647-199611000-00001","article-title":"Selective distribution of lactate dehydrogenase isoenzymes in neurons","volume":"16","author":"Bittar","year":"1996","journal-title":"J.\u00a0Cerebr. Blood Flow Metabol."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib5","doi-asserted-by":"crossref","first-page":"2342","DOI":"10.1093\/brain\/awf240","article-title":"Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis","volume":"125","author":"Chard","year":"2002","journal-title":"Brain"},{"key":"10.1016\/j.neuroimage.2019.01.027_bib6","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1161\/CIRCRESAHA.116.309769","article-title":"Hyperpolarized 13C metabolic MRI of the human heart: initial experience","volume":"119","author":"Cunningham","year":"2016","journal-title":"Circ. Res."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib10","doi-asserted-by":"crossref","first-page":"840","DOI":"10.1109\/TMI.2017.2737232","article-title":"Unsupervised segmentation of 5D hyperpolarized carbon-13 MRI data using a fuzzy Markov random field model","volume":"37","author":"Daniels","year":"2017","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib7","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1002\/nbm.3468","article-title":"A\u00a0comparison of quantitative methods for clinical imaging with hyperpolarized","volume":"29","author":"Daniels","year":"2016","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib9","doi-asserted-by":"crossref","first-page":"11050","DOI":"10.1073\/pnas.200033797","article-title":"Measuring the thickness of the human cerebral cortex from magnetic resonance images","volume":"97","author":"Fischl","year":"2000","journal-title":"Proc. Natl. Acad. Sci. Unit. States Am."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib11","doi-asserted-by":"crossref","first-page":"940","DOI":"10.1038\/nature07017","article-title":"Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate","volume":"453","author":"Gallagher","year":"2008","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2019.01.027_bib12","doi-asserted-by":"crossref","first-page":"4109","DOI":"10.1158\/0008-5472.CAN-15-0857","article-title":"Carbonic anhydrase activity monitored in vivo by hyperpolarized 13C-magnetic resonance spectroscopy demonstrates its importance for pH regulation in tumors","volume":"75","author":"Gallagher","year":"2015","journal-title":"Cancer Res."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib13","first-page":"871619","article-title":"Multisite kinetic modeling of 13C metabolic MR using [1-13C]pyruvate","author":"G\u00f3mez Dami\u00e1n","year":"2014","journal-title":"Radiol. Res. Pract."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib14","doi-asserted-by":"crossref","first-page":"826","DOI":"10.1002\/mrm.26123","article-title":"Development of a symmetric echo planar imaging framework for clinical translation of rapid dynamic hyperpolarized 13C imaging","volume":"77","author":"Gordon","year":"2016","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib15","doi-asserted-by":"crossref","first-page":"1314","DOI":"10.1002\/jmri.23753","article-title":"Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization","volume":"36","author":"Hurd","year":"2012","journal-title":"J.\u00a0Magn. Reson. Imag."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib16","doi-asserted-by":"crossref","first-page":"615","DOI":"10.1007\/s11011-014-9628-y","article-title":"Glucose metabolism following human traumatic brain injury: methods of assessment and pathophysiological findings","volume":"30","author":"Jalloh","year":"2015","journal-title":"Metab. Brain Dis."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib17","doi-asserted-by":"crossref","first-page":"1117","DOI":"10.1002\/mrm.24532","article-title":"Effects of isoflurane anesthesia on hyperpolarized 13C metabolic measurements in rat brain","volume":"70","author":"Josan","year":"2013","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib18","doi-asserted-by":"crossref","first-page":"1256","DOI":"10.1002\/nbm.3174","article-title":"Apparent rate constant mapping using hyperpolarized [1-13C]pyruvate","volume":"27","author":"Khegai","year":"2014","journal-title":"NMR Biomed."},{"issue":"1","key":"10.1016\/j.neuroimage.2019.01.027_bib39","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.jmr.2008.06.010","article-title":"Multiband excitation pulses for hyperpolarized 13C dynamic chemical-shift imaging","volume":"194","author":"Larson","year":"2008","journal-title":"J.\u00a0Magn. Res."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib19","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1016\/S0306-4522(99)00580-1","article-title":"Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and LDH-5 isoforms in the rat brain","volume":"96","author":"Laughton","year":"2000","journal-title":"Neuroscience"},{"key":"10.1016\/j.neuroimage.2019.01.027_bib20","first-page":"108691","article-title":"Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling","author":"Li","year":"2014","journal-title":"BioMed Res. Int."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib21","doi-asserted-by":"crossref","first-page":"496","DOI":"10.1126\/science.283.5401.496","article-title":"Energy on demand","volume":"283","author":"Magistretti","year":"1999","journal-title":"Science"},{"key":"10.1016\/j.neuroimage.2019.01.027_bib22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fneur.2014.00250","article-title":"Perturbed glucose metabolism: insights into multiple sclerosis pathogenesis","volume":"5","author":"Mathur","year":"2014","journal-title":"Front. Neurol."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib23","doi-asserted-by":"crossref","first-page":"792","DOI":"10.2337\/diacare.29.04.06.dc05-1818","article-title":"Disorders of glucose metabolism in acute stroke patients: an underrecognized problem","volume":"29","author":"Matz","year":"2006","journal-title":"Diabetes Care"},{"key":"10.1016\/j.neuroimage.2019.01.027_bib24","doi-asserted-by":"crossref","first-page":"15082","DOI":"10.1038\/s41598-018-33363-5","article-title":"13C pyruvate transport across the blood-brain barrier in preclinical hyperpolarised MRI","volume":"8","author":"Miller","year":"2018","journal-title":"Sci. Rep."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib25","doi-asserted-by":"crossref","first-page":"3755","DOI":"10.1158\/0008-5472.CAN-18-0221","article-title":"Metabolic imaging of the human brain with hyperpolarized 13C pyruvate demonstrates 13C lactate production in brain tumor patients","volume":"78","author":"Miloushev","year":"2018","journal-title":"Cancer Res."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib26","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1002\/mrm.10629","article-title":"Dixon techniques in spiral trajectories with off-resonance correction: a new approach for fat signal suppression without spatial-spectral RF pulses","volume":"50","author":"Moriguchi","year":"2003","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib27","doi-asserted-by":"crossref","DOI":"10.1126\/scitranslmed.3006070","article-title":"Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate","volume":"5","author":"Nelson","year":"2013","journal-title":"Sci. Transl. Med."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib28","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1002\/mrm.25003","article-title":"Dynamic hyperpolarized carbon-13 MR metabolic imaging of nonhuman primate brain","volume":"71","author":"Park","year":"2014","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib29","doi-asserted-by":"crossref","first-page":"864","DOI":"10.1002\/mrm.27077","article-title":"Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies","volume":"80","author":"Park","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib30","doi-asserted-by":"crossref","first-page":"1416","DOI":"10.1002\/glia.20528","article-title":"Activity-dependent regulation of energy metabolism by astrocytes: an update","volume":"55","author":"Pellerin","year":"2007","journal-title":"Glia"},{"key":"10.1016\/j.neuroimage.2019.01.027_bib31","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1016\/j.bbamcr.2016.03.013","article-title":"Monocarboxylate transporters in the brain and in cancer","volume":"1863","author":"P\u00e9rez-Escuredo","year":"2016","journal-title":"Biochim. Biophys. Acta Mol. Cell Res."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib32","doi-asserted-by":"crossref","first-page":"5829","DOI":"10.1073\/pnas.88.13.5829","article-title":"Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation","volume":"88","author":"Prichard","year":"1991","journal-title":"Proc. Natl. Acad. Sci. Unit. States Am."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib33","doi-asserted-by":"crossref","first-page":"1068","DOI":"10.1002\/nbm.1657","article-title":"Transmit gain calibration for nonproton MR using the Bloch-Siegert shift","volume":"24","author":"Schulte","year":"2011","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib34","doi-asserted-by":"crossref","first-page":"1209","DOI":"10.1002\/mrm.24353","article-title":"Saturation-recovery metabolic-exchange rate imaging with hyperpolarized [1-13C] pyruvate using spectral-spatial excitation","volume":"69","author":"Schulte","year":"2013","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib35","doi-asserted-by":"crossref","first-page":"3239","DOI":"10.1002\/mrm.26992","article-title":"Influence of parameter accuracy on pharmacokinetic analysis of hyperpolarized pyruvate","volume":"79","author":"Sun","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib36","doi-asserted-by":"crossref","first-page":"1269","DOI":"10.1016\/j.mri.2016.07.006","article-title":"Normal lactate concentration range in the neonatal brain","volume":"34","author":"Tomiyasu","year":"2016","journal-title":"Magn. Reson. Imaging"},{"key":"10.1016\/j.neuroimage.2019.01.027_bib37","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1002\/mrm.23212","article-title":"IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate","volume":"68","author":"Wiesinger","year":"2012","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2019.01.027_bib38","doi-asserted-by":"crossref","first-page":"688","DOI":"10.1259\/bjr.20170688","article-title":"Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism","volume":"91","author":"Zaccagna","year":"2018","journal-title":"Br. J. Radiol."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919300278?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811919300278?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,14]],"date-time":"2024-07-14T00:00:07Z","timestamp":1720915207000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811919300278"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4]]},"references-count":38,"alternative-id":["S1053811919300278"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.01.027","relation":{},"ISSN":["1053-8119"],"issn-type":[{"value":"1053-8119","type":"print"}],"subject":[],"published":{"date-parts":[[2019,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Quantifying normal human brain metabolism using hyperpolarized [1\u201313C]pyruvate and magnetic resonance imaging","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2019.01.027","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 The Authors. Published by Elsevier Inc.","name":"copyright","label":"Copyright"}]}}