{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,11]],"date-time":"2025-04-11T06:49:27Z","timestamp":1744354167664,"version":"3.37.3"},"reference-count":151,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,12,1]],"date-time":"2018-12-01T00:00:00Z","timestamp":1543622400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"NIH\/NINDS","award":["R01 NS056307"]},{"name":"NIH\/NIMH","award":["R01 MH078160","R01 MH085328"]},{"name":"NIH\/NIBIB","award":["U54 EB020403"]},{"name":"CERES2 development","award":["UPV2016-0099"]},{"DOI":"10.13039\/501100004233","name":"Universitat Polit\u00e8cnica de Val\u00e8ncia","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004233","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001665","name":"French National Research Agency","doi-asserted-by":"publisher","award":["ANR-10-IDEX-03-02"],"id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Cluster of excellence CPU and TRAIL","award":["HR-DTI ANR-10-LABX-57"]},{"name":"National Science and Engineering Research Council of Canada"},{"name":"ETS Research Chair on Artificial Intelligence in Medical Imaging"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2018,12]]},"DOI":"10.1016\/j.neuroimage.2018.08.003","type":"journal-article","created":{"date-parts":[[2018,8,9]],"date-time":"2018-08-09T17:04:39Z","timestamp":1533834279000},"page":"150-172","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":90,"special_numbering":"C","title":["Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images"],"prefix":"10.1016","volume":"183","author":[{"given":"Aaron","family":"Carass","sequence":"first","affiliation":[]},{"given":"Jennifer L.","family":"Cuzzocreo","sequence":"additional","affiliation":[]},{"given":"Shuo","family":"Han","sequence":"additional","affiliation":[]},{"given":"Carlos R.","family":"Hernandez-Castillo","sequence":"additional","affiliation":[]},{"given":"Paul E.","family":"Rasser","sequence":"additional","affiliation":[]},{"given":"Melanie","family":"Ganz","sequence":"additional","affiliation":[]},{"given":"Vincent","family":"Beliveau","sequence":"additional","affiliation":[]},{"given":"Jose","family":"Dolz","sequence":"additional","affiliation":[]},{"given":"Ismail","family":"Ben Ayed","sequence":"additional","affiliation":[]},{"given":"Christian","family":"Desrosiers","sequence":"additional","affiliation":[]},{"given":"Benjamin","family":"Thyreau","sequence":"additional","affiliation":[]},{"given":"Jos\u00e9 E.","family":"Romero","sequence":"additional","affiliation":[]},{"given":"Pierrick","family":"Coup\u00e9","sequence":"additional","affiliation":[]},{"given":"Jos\u00e9 V.","family":"Manj\u00f3n","sequence":"additional","affiliation":[]},{"given":"Vladimir S.","family":"Fonov","sequence":"additional","affiliation":[]},{"given":"D. Louis","family":"Collins","sequence":"additional","affiliation":[]},{"given":"Sarah H.","family":"Ying","sequence":"additional","affiliation":[]},{"given":"Chiadi U.","family":"Onyike","sequence":"additional","affiliation":[]},{"given":"Deana","family":"Crocetti","sequence":"additional","affiliation":[]},{"given":"Bennett A.","family":"Landman","sequence":"additional","affiliation":[]},{"given":"Stewart H.","family":"Mostofsky","sequence":"additional","affiliation":[]},{"given":"Paul M.","family":"Thompson","sequence":"additional","affiliation":[]},{"given":"Jerry L.","family":"Prince","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2018.08.003_bib1","series-title":"Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA","article-title":"A\u00a0toolbox to visually explore cerebellar sub-structure shape changes in cerebellar ataxia","author":"Abulnaga","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib2","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1176\/appi.ajp.160.2.262","article-title":"Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of Autism","volume":"160","author":"Allen","year":"2003","journal-title":"Am. J. Psychiatr."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib3","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.tins.2007.12.005","article-title":"Neuroanatomy of autism","volume":"31","author":"Amaral","year":"2008","journal-title":"Trends Neurosci."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib4","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.biopsych.2008.01.003","article-title":"The role of the cerebellum in schizophrenia","volume":"64","author":"Andreasen","year":"2008","journal-title":"Biol. Psychiatr."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib5","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.neuroimage.2007.07.007","article-title":"A\u00a0fast diffeomorphic image registration algorithm","volume":"38","author":"Ashburner","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib6","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1002\/(SICI)1097-0193(200004)9:4<212::AID-HBM3>3.0.CO;2-#","article-title":"Image registration using a symmetric prior - in three-dimensions","volume":"9","author":"Ashburner","year":"2000","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib7","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1002\/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G","article-title":"Nonlinear spatial normalization using basis functions","volume":"7","author":"Ashburner","year":"1999","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib8","doi-asserted-by":"crossref","first-page":"839","DOI":"10.1016\/j.neuroimage.2005.02.018","article-title":"Unified segmentation","volume":"26","author":"Ashburner","year":"2005","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib9","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.media.2007.06.004","article-title":"Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain","volume":"12","author":"Avants","year":"2008","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib10","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1016\/S0306-4522(98)90664-9","article-title":"Neuronal loss in functional zones of the cerebellum of chronic alcoholics with and without Wernicke's encephalopathy","volume":"91","author":"Baker","year":"1999","journal-title":"Neuroscience"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib11","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0146388","article-title":"A\u00a0novel GBM saliency detection model using multi-channel MRI","volume":"11","author":"Banerjee","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib12","series-title":"2010 European Conference on Computer Vision (ECCV 2010)","first-page":"29","article-title":"The generalized patchmatch correspondence algorithm","author":"Barnes","year":"2010"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib13","doi-asserted-by":"crossref","first-page":"3391","DOI":"10.1002\/hbm.23595","article-title":"Association between serotonin denervation and resting-state functional connectivity in mild cognitive impairment","volume":"38","author":"Barrett","year":"2017","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib14","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/s12311-014-0627-7","article-title":"Consensus paper: the role of the cerebellum in perceptual processes","volume":"14","author":"Baumann","year":"2015","journal-title":"Cerebellum"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib15","doi-asserted-by":"crossref","first-page":"616","DOI":"10.1016\/j.media.2008.06.008","article-title":"Homeomorphic brain image segmentation with topological and statistical atlases","volume":"12","author":"Bazin","year":"2008","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib16","series-title":"Proc. 9th Python in Science Conf","doi-asserted-by":"crossref","first-page":"1","DOI":"10.25080\/Majora-92bf1922-003","article-title":"Theano: a CPU and GPU math compiler in Python","author":"Bergstra","year":"2010"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib17","doi-asserted-by":"crossref","first-page":"4016","DOI":"10.1002\/hbm.22894","article-title":"Beat and metaphoric gestures are differentially associated with regional cerebellar and cortical volumes","volume":"36","author":"Bernard","year":"2015","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib18","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/S0140-6736(86)90837-8","article-title":"Statistical methods for assessing agreement between two methods of clinical measurement","volume":"327","author":"Bland","year":"1986","journal-title":"Lancet"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib19","series-title":"23rd Inf. Proc. in Med. Imaging (IPMI 2013)","first-page":"62","article-title":"Automated segmentation of the cerebellar lobules using boundary specific classification and evolution","author":"Bogovic","year":"2013"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib20","doi-asserted-by":"crossref","first-page":"616","DOI":"10.1016\/j.neuroimage.2012.08.075","article-title":"Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters","volume":"64","author":"Bogovic","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib21","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.cviu.2012.10.006","article-title":"A\u00a0multiple object geometric deformable model for image segmentation","volume":"117","author":"Bogovic","year":"2013","journal-title":"Comput. Vis. Image Understand."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib22","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1212\/01.WNL.0000134673.95020.EE","article-title":"Regional reductions of gray matter volume in familial dyslexia","volume":"63","author":"Brambati","year":"2004","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib23","doi-asserted-by":"crossref","first-page":"724","DOI":"10.1016\/j.neuroimage.2004.06.018","article-title":"A\u00a0unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume","volume":"23","author":"Buckner","year":"2004","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib24","doi-asserted-by":"crossref","first-page":"1982","DOI":"10.1016\/j.neuroimage.2011.03.045","article-title":"Simple paradigm for extra-cerebral tissue removal: algorithm and analysis","volume":"56","author":"Carass","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib25","series-title":"Medical Image Recognition, Segmentation and Parsing","first-page":"259","article-title":"An overview of the multi-object geometric deformable model approach in biomedical imaging","author":"Carass","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib26","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.dib.2017.04.004","article-title":"Longitudinal multiple sclerosis lesion segmentation data resource","volume":"12","author":"Carass","year":"2017","journal-title":"Data in Brief"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib27","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.neuroimage.2016.12.064","article-title":"Longitudinal multiple sclerosis lesion segmentation: resource & challenge","volume":"148","author":"Carass","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib28","series-title":"Patch-MI 2017: Patch-based Techniques in Medical Imaging","first-page":"20","article-title":"Whole brain parcellation with pathology: validation on ventriculomegaly patients","author":"Carass","year":"2017"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib29","series-title":"4th International Symposium on Biomedical Imaging (ISBI 2007)","first-page":"656","article-title":"A\u00a0joint registration and segmentation approach to skull stripping","author":"Carass","year":"2007"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib30","doi-asserted-by":"crossref","first-page":"1184","DOI":"10.1016\/j.neuroimage.2008.03.041","article-title":"Altered cerebellar feedback projections in Asperger syndrome","volume":"41","author":"Catani","year":"2008","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib31","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1111\/j.1365-2990.1997.tb01309.x","article-title":"Selective damage to the cerebellar vermis in chronic alcoholism: a contribution from neurotoxicology to an old problem of selective vulnerability","volume":"23","author":"Cavanagh","year":"1997","journal-title":"Neuropathol. Appl. Neurobiol."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib32","series-title":"19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2016)","first-page":"424","article-title":"3D U-Net: learning dense volumetric segmentation from sparse annotation","author":"\u00c7i\u00e7ek","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib33","series-title":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2487","article-title":"DCAN: deep contour-aware networks for accurate gland segmentation","author":"Chen","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib34","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1017\/S1355617708080594","article-title":"Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism","volume":"14","author":"Cleavinger","year":"2008","journal-title":"J.\u00a0Int. Neuropsychol. Soc."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib35","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1097\/00004728-199403000-00005","article-title":"Automatic 3-D intersubject registration of MR volumetric data in standardized Talairach space","volume":"18","author":"Collins","year":"1994","journal-title":"J.\u00a0Comput. Assist. Tomogr."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib36","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.pscychresns.2014.06.006","article-title":"Patterns of cerebellar volume loss in dementia with Lewy bodies and Alzheimer's disease: a VBM-DARTEL study","volume":"223","author":"Colloby","year":"2014","journal-title":"Psychiatr. Res. Neuroimaging"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib37","doi-asserted-by":"crossref","first-page":"940","DOI":"10.1016\/j.neuroimage.2010.09.018","article-title":"Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation","volume":"54","author":"Coupe","year":"2011","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib38","doi-asserted-by":"crossref","first-page":"123","DOI":"10.2214\/ajr.162.1.8273650","article-title":"Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: identification of hypoplastic and hyperplastic with MR imaging","volume":"162","author":"Courchesne","year":"1994","journal-title":"Am. J. Roentgenol."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib39","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1006\/nimg.1998.0395","article-title":"Cortical surface-based analysis I: segmentation and surface reconstruction","volume":"9","author":"Dale","year":"1999","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib40","doi-asserted-by":"crossref","first-page":"968","DOI":"10.1016\/j.neuroimage.2006.01.021","article-title":"An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest","volume":"31","author":"Desikan","year":"2006","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib41","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1016\/S1364-6613(98)01211-X","article-title":"Neuroimaging studies of the cerebellum: language, learning and memory","volume":"2","author":"Desmond","year":"1998","journal-title":"Trends Cognit. Sci."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib42","doi-asserted-by":"crossref","first-page":"297","DOI":"10.2307\/1932409","article-title":"Measures of the amount of ecologic association between species","volume":"26","author":"Dice","year":"1945","journal-title":"Ecology"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib43","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.neuroimage.2006.05.056","article-title":"A\u00a0spatially unbiased atlas template of the human cerebellum","volume":"33","author":"Diedrichsen","year":"2006","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib44","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.neuroimage.2009.01.045","article-title":"A\u00a0probabilistic MR atlas of the human cerebellum","volume":"46","author":"Diedrichsen","year":"2009","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib45","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1016\/j.nicl.2015.02.007","article-title":"Cerebellar gray matter and lobular volumes correlate with core autism symptoms","volume":"7","author":"D'Mello","year":"2015","journal-title":"Neuroimage: Clinical"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib46","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.neuroimage.2017.04.039","article-title":"3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study","volume":"170","author":"Dolz","year":"2018","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib47","doi-asserted-by":"crossref","first-page":"411","DOI":"10.3233\/JAD-2010-100156","article-title":"Morphological cerebral correlates of CERAD test performance in mild cognitive impairment and Alzheimer's disease","volume":"23","author":"Dos Santos","year":"2011","journal-title":"Jrnl. Alzheimer\u2019s Disease"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib48","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1097\/00004583-200403000-00016","article-title":"Magnetic resonance imaging of boys with attention-deficit\/hyperactivity disorder and their unaffected siblings","volume":"43","author":"Durston","year":"2004","journal-title":"J.\u00a0Am. Acad. Child Adolesc. Psychiatr."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib49","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0184661","article-title":"MRIQC: advancing the automatic prediction of image quality in MRI from unseen sites","volume":"12","author":"Esteban","year":"2017","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib50","doi-asserted-by":"crossref","first-page":"774","DOI":"10.1016\/j.neuroimage.2012.01.021","article-title":"FreeSurfer","volume":"62","author":"Fischl","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib51","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1016\/S0896-6273(02)00569-X","article-title":"Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain","volume":"33","author":"Fischl","year":"2002","journal-title":"Neuron"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib52","doi-asserted-by":"crossref","first-page":"S69","DOI":"10.1016\/j.neuroimage.2004.07.016","article-title":"Sequence-independent segmentation of magnetic resonance images","volume":"23","author":"Fischl","year":"2004","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib53","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1016\/j.neubiorev.2007.08.004","article-title":"The relationship between alcoholic cerebellar degeneration and cognitive and emotional functioning","volume":"32","author":"Fitzpatrick","year":"2008","journal-title":"Neurosci. Biobehav. Rev."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib54","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.neuroimage.2010.07.033","article-title":"Unbiased average age-appropriate atlases for pediatric studies","volume":"54","author":"Fonov","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib55","doi-asserted-by":"crossref","first-page":"770","DOI":"10.1016\/j.neuroimage.2015.07.076","article-title":"An optimized patchmatch for multi-scale and multi-feature label fusion","volume":"124","author":"Giraud","year":"2016","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib56","doi-asserted-by":"crossref","first-page":"1524","DOI":"10.1136\/jnnp.2003.018093","article-title":"Evidence for distinct cognitive deficits after focal cerebellar lesions","volume":"75","author":"Gottwald","year":"2004","journal-title":"J.\u00a0Neurol. Neurosurg. Psychiatry"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib57","series-title":"Proceedings of SPIE Medical Imaging (SPIE-MI 2017), Orlando, FL","article-title":"Machine learning in a graph framework for subcortical segmentation","author":"Guo","year":"2017"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib58","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.neuroimage.2006.02.051","article-title":"Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer","volume":"32","author":"Han","year":"2006","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib59","series-title":"2015 IEEE International Conference on Computer Vision (ICCV)","first-page":"1026","article-title":"Delving deep into rectifiers: surpassing humanlevel performance on imagenet classification","author":"He","year":"2015"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib60","series-title":"Fetal, Infant and Ophthalmic Medical Image Analysis: International Workshop, FIFI 2017, and 4th International Workshop, OMIA 2017, Held in Conjunction with MICCAI 2017, Qu\u00e9bec City, QC, Canada, September 14, Proceedings","first-page":"202","article-title":"Towards topological correct segmentation of macular OCT from cascaded FCNs","author":"He","year":"2017"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib61","doi-asserted-by":"crossref","first-page":"1251","DOI":"10.1109\/TMI.2009.2013851","article-title":"Comparison and evaluation of methods for liver segmentation from CT datasets","volume":"28","author":"Heimann","year":"2009","journal-title":"IEEE Trans. Med. Imag."},{"year":"1879","author":"Henle","series-title":"Handbuch der Nervenlehre des Menschen","key":"10.1016\/j.neuroimage.2018.08.003_bib62"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib63","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1002\/jmri.10163","article-title":"Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia","volume":"16","author":"Hsu","year":"2002","journal-title":"Jrnl. of Magnetic Resonance Imaging"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib64","series-title":"Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA","article-title":"Combining multi-atlas segmentation with brain surface estimation","author":"Huo","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib65","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.neuroimage.2016.05.030","article-title":"Consistent cortical reconstruction and multi-atlas brain segmentation","volume":"138","author":"Huo","year":"2016","journal-title":"Neuroimage"},{"year":"1984","author":"Ito","series-title":"The Cerebellum and Neural Control","key":"10.1016\/j.neuroimage.2018.08.003_bib66"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib67","doi-asserted-by":"crossref","first-page":"1697","DOI":"10.1007\/s00429-013-0595-6","article-title":"Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume","volume":"219","author":"Jednor\u00f3g","year":"2013","journal-title":"Brain Struct. Funct."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib68","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.media.2016.10.004","article-title":"Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation","volume":"36","author":"Kamnitsas","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib69","first-page":"707","article-title":"Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration","volume":"140","author":"Kansal","year":"2016","journal-title":"Brain"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib70","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1016\/S1053-8119(03)00041-7","article-title":"A\u00a0comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry","volume":"18","author":"Karas","year":"2003","journal-title":"Neuroimage"},{"year":"2014","author":"Kingma","series-title":"Adam: a Method for Stochastic Optimization","key":"10.1016\/j.neuroimage.2018.08.003_bib71"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib72","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1007\/s12021-012-9159-9","article-title":"System for integrated neuroimaging analysis and processing of structure","volume":"11","author":"Landman","year":"2013","journal-title":"Neuroinformatics"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib73","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1002\/cne.900970204","article-title":"The morphogenesis and adult pattern of the lobules and tissues of the cerebellum of the white rat","volume":"97","author":"Larsell","year":"1952","journal-title":"J.\u00a0Comp. Neuol."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib74","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.media.2014.12.003","article-title":"Robust whole-brain segmentation: application to traumatic brain injury","volume":"21","author":"Ledig","year":"2015","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib75","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1017\/S0317167100014232","article-title":"The role of the cerebellum in the pathophysiology of Parkinson's disease","volume":"40","author":"Lewis","year":"2013","journal-title":"Can. J. Neurol. Sci.\/J. Can. Sci. Neurol."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib76","series-title":"Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA","first-page":"9784","article-title":"Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles","author":"Li","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib77","series-title":"IEEE Workshop on Mathematical Methods in Biomedical Image Analysis","first-page":"185","article-title":"Topology preserving brain tissue segmentation using graph cuts","author":"Liu","year":"2012"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib78","series-title":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3431","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib79","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/j.media.2016.07.009","article-title":"ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI","volume":"35","author":"Maier","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib80","article-title":"Is the winner really the best? A critical analysis of common research practice in biomedical image analysis competitions","author":"Maier-Hein","year":"2018","journal-title":"Nat. Commun."},{"year":"1776","author":"Malacarne","series-title":"Nuova esposizione della vera struttura del cervelletto umano","key":"10.1016\/j.neuroimage.2018.08.003_bib81"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib82","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1002\/jmri.22003","article-title":"Adaptive non-local means denoising of MR images with spatially varying noise levels","volume":"31","author":"Manj\u00f3n","year":"2010","journal-title":"Magn. Reson. Imag."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib83","series-title":"Patch-MI 2016: Patch-based Techniques in Medical Imaging","first-page":"92","article-title":"HIST: HyperIntensity segmentation tool","author":"Manj\u00f3n","year":"2016"},{"year":"2013","author":"Manto","series-title":"Handbook of the Cerebellum and Cerebellar Disorders","key":"10.1016\/j.neuroimage.2018.08.003_bib84"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib85","doi-asserted-by":"crossref","first-page":"659","DOI":"10.1038\/mp.2013.78","article-title":"The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism","volume":"19","author":"Martino","year":"2014","journal-title":"Mol. Psychiatr."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib86","doi-asserted-by":"crossref","DOI":"10.1155\/2015\/813696","article-title":"MRBrainS challenge: online evaluation framework for brain image segmentation in 3T MRI scans","author":"Mendrik","year":"2015","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib87","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","article-title":"The multimodal brain tumor image segmentation benchmark (BRATS)","volume":"34","author":"Menze","year":"2015","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib88","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/S0165-0173(99)00040-5","article-title":"Basal ganglia and cerebellar loops: motor and cognitive circuits","volume":"31","author":"Middleton","year":"2000","journal-title":"Brain Res. Rev."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib89","doi-asserted-by":"crossref","first-page":"2014","DOI":"10.1016\/j.neurobiolaging.2013.02.013","article-title":"Different patterns of gray matter atrophy in early- and late-onset Alzheimer's disease","volume":"34","author":"M\u00f6ller","year":"2013","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib90","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1212\/WNL.50.1.121","article-title":"Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance","volume":"50","author":"Mostofsky","year":"1998","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib91","doi-asserted-by":"crossref","first-page":"434","DOI":"10.1177\/088307389801300904","article-title":"Evaluation of cerebellar size in attention-deficit hyperactivity disorder","volume":"13","author":"Mostofsky","year":"1998","journal-title":"J.\u00a0Child Neurol."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib92","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.neuroimage.2013.04.048","article-title":"Mapping the effects of ApoE4, age and cognitive status on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid density and growth","volume":"78","author":"Murphy","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib93","doi-asserted-by":"crossref","first-page":"703","DOI":"10.1016\/S0006-3223(99)00093-1","article-title":"An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept","volume":"46","author":"Nopoulos","year":"1999","journal-title":"Biol. Psychiatr."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib94","series-title":"16th Inf. Proc. in Med. Imaging (IPMI 1999)","first-page":"490","article-title":"New variants of a method of MRI scale normalization","author":"Ny\u00fal","year":"1999"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib95","doi-asserted-by":"crossref","first-page":"1072","DOI":"10.1002\/(SICI)1522-2594(199912)42:6<1072::AID-MRM11>3.0.CO;2-M","article-title":"On standardizing the MR image intensity scale","volume":"42","author":"Ny\u00fal","year":"1999","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib96","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/S0920-9964(01)00248-1","article-title":"Selective reduction of the posterior superior vermis in men with chronic schizophrenia","volume":"55","author":"Okugawa","year":"2002","journal-title":"Schizophr. Res."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib97","doi-asserted-by":"crossref","first-page":"1614","DOI":"10.1176\/appi.ajp.160.9.1614","article-title":"Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia","volume":"160","author":"Okugawa","year":"2003","journal-title":"Am. J. Psychiatr."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib98","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/j.neuroimage.2014.03.037","article-title":"Derivation of high-resolution MRI atlases of the human cerebellum at 3T and segmentation using multiple automatically generated templates","volume":"95","author":"Park","year":"2014","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib99","doi-asserted-by":"crossref","first-page":"163","DOI":"10.3389\/fnsys.2014.00163","article-title":"The therapeutic potential of the cerebellum in schizophrenia","volume":"8","author":"Parker","year":"2014","journal-title":"Front. Syst. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib100","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1016\/j.neuroimage.2011.02.046","article-title":"Bayesian model of shape and appearance for subcortical brain segmentation","volume":"56","author":"Patenaude","year":"2011","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib101","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1006\/nimg.2002.1207","article-title":"Manual and semiautomated measurement of cerebellar subregions on MR images","volume":"17","author":"Pierson","year":"2002","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib102","series-title":"Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA","article-title":"Improving cerebellar segmentation with statistical fusion","author":"Plassard","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib103","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.neuroimage.2007.05.063","article-title":"Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures","volume":"39","author":"Powell","year":"2008","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib104","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1016\/j.neuroimage.2014.08.047","article-title":"Automated MRI cerebellar size measurements using active appearance modeling","volume":"103","author":"Price","year":"2014","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib105","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.neuroimage.2011.02.076","article-title":"Avoiding asymmetry-induced bias in longitudinal image processing","volume":"57","author":"Reuter","year":"2011","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib106","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1016\/j.neuroimage.2016.11.003","article-title":"CERES: a new cerebellum lobule segmentation method","volume":"147","author":"Romero","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib107","series-title":"18th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2015)","first-page":"234","article-title":"U-net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib108","doi-asserted-by":"crossref","first-page":"1852","DOI":"10.1109\/TMI.2011.2156806","article-title":"A\u00a0supervised patch-based approach for human brain labeling","volume":"30","author":"Rousseau","year":"2011","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib109","doi-asserted-by":"crossref","first-page":"1598","DOI":"10.1109\/JBHI.2015.2439242","article-title":"Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation","volume":"19","author":"Roy","year":"2015","journal-title":"IEEE Journal of Biomedical and Health Informatics"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib110","doi-asserted-by":"crossref","first-page":"1599","DOI":"10.1002\/nbm.3413","article-title":"Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI","volume":"28","author":"Sauwen","year":"2015","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib111","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1016\/j.media.2009.06.003","article-title":"Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms","volume":"13","author":"Schaap","year":"2009","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib112","doi-asserted-by":"crossref","first-page":"1178","DOI":"10.1001\/archneur.1991.00530230086029","article-title":"An emerging concept. The cerebellar contribution to higher function","volume":"48","author":"Schmahmann","year":"1991","journal-title":"Arch. Neurol."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib113","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1176\/jnp.16.3.367","article-title":"Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome","volume":"16","author":"Schmahmann","year":"2004","journal-title":"J.\u00a0Neuropsychiatry Clin. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib114","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1093\/brain\/awh729","article-title":"Cognition, emotion and the cerebellum","volume":"129","author":"Schmahmann","year":"2006","journal-title":"Brain"},{"year":"2000","author":"Schmahmann","series-title":"MRI atlas of the Human Cerebellum","key":"10.1016\/j.neuroimage.2018.08.003_bib115"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib116","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1080\/14734220500348584","article-title":"The cerebellum on the rise in human emotion","volume":"4","author":"Schutter","year":"2005","journal-title":"Cerebellum"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib117","series-title":"Proceedings of SPIE Medical Imaging (SPIE-MI 2018), Houstan, TX","article-title":"Multi-atlas segmentation of the hydrocephalus brain using an adaptive ventricle atlas","author":"Shao","year":"2018"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib118","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/S1361-8415(02)00054-3","article-title":"BrainSuite: an automated cortical surface identification tool","volume":"6","author":"Shattuck","year":"2002","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib119","doi-asserted-by":"crossref","first-page":"1064","DOI":"10.1016\/j.neuroimage.2007.09.031","article-title":"Construction of a 3D probabilistic atlas of human cortical structures","volume":"39","author":"Shattuck","year":"2008","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib120","doi-asserted-by":"crossref","first-page":"856","DOI":"10.1006\/nimg.2000.0730","article-title":"Magnetic resonance image tissue classification using a partial volume model","volume":"13","author":"Shattuck","year":"2001","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib121","series-title":"22nd Inf. Proc. in Med. Imaging (IPMI 2011)","first-page":"1","article-title":"Segmentation of brain images using adaptive atlases with application to ventriculomegaly","author":"Shiee","year":"2011"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib122","doi-asserted-by":"crossref","first-page":"3385","DOI":"10.1002\/hbm.22409","article-title":"Reconstruction of the human cerebral cortex robust to white matter lesions: method and validation","volume":"35","author":"Shiee","year":"2014","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib123","doi-asserted-by":"crossref","first-page":"1524","DOI":"10.1016\/j.neuroimage.2009.09.005","article-title":"A\u00a0topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions","volume":"49","author":"Shiee","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib124","doi-asserted-by":"crossref","first-page":"2047","DOI":"10.1212\/WNL.44.11.2047","article-title":"The cerebellum contributes to linguistic production","volume":"44","author":"Silveri","year":"1994","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib125","doi-asserted-by":"crossref","first-page":"92","DOI":"10.3389\/fnsys.2014.00092","article-title":"Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia","volume":"8","author":"Stoodley","year":"2014","journal-title":"Front. Syst. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib126","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1146\/annurev.neuro.31.060407.125606","article-title":"Cerebellum and nonmotor function","volume":"32","author":"Strick","year":"2009","journal-title":"Annu. Rev. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib127","series-title":"11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2008) 3D Segmentation in the Clinic: a Grand Challenge II","first-page":"1","article-title":"3D segmentation in the clinic: a Grand challenge II: MS lesion segmentation","author":"Styner","year":"2008"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib128","series-title":"17th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2014)","first-page":"105","article-title":"Optimized patchMatch for near real time and accurate label fusion","author":"Ta","year":"2014"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib129","doi-asserted-by":"crossref","first-page":"1198","DOI":"10.1016\/j.jpsychires.2007.12.002","article-title":"The cerebellum in mild cognitive impairment and Alzheimer's disease - a structural MRI study","volume":"42","author":"Thomann","year":"2008","journal-title":"J.\u00a0Psychiatr. Res."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib130","first-page":"26","article-title":"Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude","volume":"vol. 4","author":"Tieleman","year":"2015"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib131","doi-asserted-by":"crossref","first-page":"1349","DOI":"10.1109\/TMI.2015.2393853","article-title":"A\u00a0model of population and subject (MOPS) intensities with application to multiple sclerosis lesion segmentation","volume":"34","author":"Tomas-Fernandez","year":"2015","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib132","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/0022-510X(86)90049-3","article-title":"The prevalence of alcoholic cerebellar atrophy: a morphometric and histological study of an autopsy material","volume":"75","author":"Torvik","year":"1986","journal-title":"J.\u00a0Neurol. Sci."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib133","doi-asserted-by":"crossref","first-page":"838","DOI":"10.1016\/j.neuroimage.2005.08.061","article-title":"Cortical reconstruction using implicit surface evolution: accuracy and precision analysis","volume":"29","author":"Tosun","year":"2006","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib134","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1016\/j.biopsych.2017.09.029","article-title":"Cerebellar volume in autism: literature meta-analysis and analysis of the autism brain imaging data exchange cohort","volume":"83","author":"Traut","year":"2018","journal-title":"Biol. Psychiatr."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib135","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1109\/TMI.2010.2046908","article-title":"N4ITK: improved N3 bias correction","volume":"29","author":"Tustison","year":"2010","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib136","series-title":"6th International Symposium on Biomedical Imaging (ISBI 2009)fp","first-page":"221","article-title":"Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors","author":"van der Lijn","year":"2009"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib137","doi-asserted-by":"crossref","first-page":"897","DOI":"10.1109\/42.811270","article-title":"Automated model-based tissue classification of MR images of the brain","volume":"18","author":"Van Leemput","year":"1999","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib138","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1001\/archneur.1959.03840060001001","article-title":"A\u00a0restricted form of cerebellar cortical degeneration occurring in alcoholic patients","volume":"1","author":"Victor","year":"1959","journal-title":"AMA Arch. Neurol."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib139","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1109\/TPAMI.2012.143","article-title":"Multi-atlas segmentation with joint label fusion","volume":"35","author":"Wang","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib140","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.pscychresns.2008.06.001","article-title":"Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder","volume":"172","author":"Webb","year":"2009","journal-title":"Psychiatr. Res. Neuroimaging"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib141","doi-asserted-by":"crossref","first-page":"5026","DOI":"10.1002\/hbm.22529","article-title":"Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)\u2013Implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum","volume":"35","author":"Weier","year":"2014","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib142","doi-asserted-by":"crossref","first-page":"599","DOI":"10.1177\/1352458515595132","article-title":"Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis","volume":"22","author":"Weier","year":"2016","journal-title":"Multiple Sclerosis Journal"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib143","doi-asserted-by":"crossref","first-page":"80","DOI":"10.2307\/3001968","article-title":"Individual comparisons by ranking methods","volume":"1","author":"Wilcoxon","year":"1945","journal-title":"Biometrics Bull."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib144","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.schres.2016.06.028","article-title":"Sexual dimorphism of the cerebellar vermis in schizophrenia","volume":"176","author":"Womer","year":"2016","journal-title":"Schizophr. Res."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib145","series-title":"Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA","article-title":"Landmark based shape analysis for cerebellar ataxia classification and structural change pattern visualization","author":"Yang","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib146","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1016\/j.neuroimage.2015.09.032","article-title":"Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease","volume":"127","author":"Yang","year":"2016","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib147","series-title":"Machine Learning in Medical Imaging","first-page":"68","article-title":"Deep learning for cerebellar ataxia classification and functional score regression","author":"Yang","year":"2014"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib148","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1212\/01.wnl.0000196464.47508.00","article-title":"Pontine and cerebellar atrophy correlate with clinical disability in SCA2","volume":"66","author":"Ying","year":"2006","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib149","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/42.906424","article-title":"Segmentation of brain MR images through a hidden Markov random field model and the Expectation-Maximization algorithm","volume":"20","author":"Zhang","year":"2001","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.neuroimage.2018.08.003_bib150","series-title":"Machine Learning in Medical Imaging (MLMI 2017)","first-page":"291","article-title":"Whole brain segmentation and labeling from CT using synthetic MR images","author":"Zhao","year":"2017"},{"key":"10.1016\/j.neuroimage.2018.08.003_bib151","series-title":"Proceedings of SPIE Medical Imaging (SPIE-MI 2018), Houstan, TX","article-title":"Automatic outlier detection using hidden Markov model for cerebellar lobule segmentation","author":"Zuo","year":"2018"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918306906?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918306906?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T02:43:50Z","timestamp":1720493030000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811918306906"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,12]]},"references-count":151,"alternative-id":["S1053811918306906"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.08.003","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2018,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.08.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}