{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T12:59:29Z","timestamp":1725454769993},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T00:00:00Z","timestamp":1538352000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"German Research Foundation (DFG, g","award":["ZA 814\/2-1"]},{"DOI":"10.13039\/501100007601","name":"Horizon 2020 research and innovation programme","doi-asserted-by":"publisher","award":["667510"],"id":[{"id":"10.13039\/501100007601","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2018,10]]},"DOI":"10.1016\/j.neuroimage.2018.06.026","type":"journal-article","created":{"date-parts":[[2018,6,15]],"date-time":"2018-06-15T04:01:11Z","timestamp":1529035271000},"page":"144-155","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":32,"special_numbering":"C","title":["Chemical exchange saturation transfer MRI contrast in the human brain at 9.4\u202fT"],"prefix":"10.1016","volume":"179","author":[{"given":"Moritz","family":"Zaiss","sequence":"first","affiliation":[]},{"given":"Mark","family":"Schuppert","sequence":"additional","affiliation":[]},{"given":"Anagha","family":"Deshmane","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Herz","sequence":"additional","affiliation":[]},{"given":"Philipp","family":"Ehses","sequence":"additional","affiliation":[]},{"given":"Lars","family":"F\u00fcllbier","sequence":"additional","affiliation":[]},{"given":"Tobias","family":"Lindig","sequence":"additional","affiliation":[]},{"given":"Benjamin","family":"Bender","sequence":"additional","affiliation":[]},{"given":"Ulrike","family":"Ernemann","sequence":"additional","affiliation":[]},{"given":"Klaus","family":"Scheffler","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2018.06.026_bib1","doi-asserted-by":"crossref","first-page":"830","DOI":"10.1002\/mrm.20441","article-title":"Iopamidol: exploring the potential use of a well-established x-ray contrast agent for MRI","volume":"53","author":"Aime","year":"2005","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib2","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1038\/nm.2615","article-title":"Magnetic resonance imaging of glutamate","volume":"18","author":"Cai","year":"2012","journal-title":"Nat. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/nbm.3216","article-title":"CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor","volume":"28","author":"Cai","year":"2015","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib4","doi-asserted-by":"crossref","first-page":"1764","DOI":"10.1002\/mrm.24520","article-title":"Natural D-glucose as a biodegradable MRI contrast agent for detecting cancer","volume":"68","author":"Chan","year":"2012","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib5","first-page":"30","article-title":"Investigation of the contribution of total creatine to the CEST Z-spectrum of brain using a knockout mouse model","author":"Chen","year":"2017","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib6","doi-asserted-by":"crossref","DOI":"10.1002\/mrm.27111","article-title":"Separating fast and slow exchange transfer and magnetization transfer using off-resonance variable-delay multiple-pulse (VDMP) MRI","author":"Chen","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib7","doi-asserted-by":"crossref","DOI":"10.1002\/nbm.3740","article-title":"Chemical-exchange-sensitive MRI of amide, amine and NOE at 9.4 T versus 15.2 T","volume":"30","author":"Chung","year":"2017","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib8","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1002\/(SICI)1099-1492(199706\/08)10:4\/5<171::AID-NBM453>3.0.CO;2-L","article-title":"Software tools for analysis and visualization of fMRI data","volume":"10","author":"Cox","year":"1997","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib9","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1002\/mrm.26343","article-title":"Elucidation of the downfield spectrum of human brain at 7\u2009T using multiple inversion recovery delays and echo times","volume":"78","author":"Fichtner","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib10","doi-asserted-by":"crossref","first-page":"2892","DOI":"10.1063\/1.1734121","article-title":"Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance","volume":"39","author":"Forsen","year":"1963","journal-title":"J.\u00a0Chem. Phys."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib11","doi-asserted-by":"crossref","first-page":"906","DOI":"10.1002\/nbm.3317","article-title":"Signature of protein unfolding in chemical exchange saturation transfer imaging","volume":"28","author":"Goerke","year":"2015","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib12","doi-asserted-by":"crossref","DOI":"10.1002\/nbm.3665","article-title":"Aggregation-induced changes in the chemical exchange saturation transfer (CEST) signals of proteins","author":"Goerke","year":"2017","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib13","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1002\/nbm.2875","article-title":"Imaging of glutamate neurotransmitter alterations in Alzheimer's disease","volume":"26","author":"Haris","year":"2013","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib14","doi-asserted-by":"crossref","first-page":"1514","DOI":"10.1093\/neuonc\/nov106","article-title":"pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI","volume":"17","author":"Harris","year":"2015","journal-title":"Neuro Oncol."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib15","doi-asserted-by":"crossref","first-page":"1630","DOI":"10.1002\/mrm.25795","volume":"75","author":"Heo","year":"2016","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib16","series-title":"Proceedings of ISMRM 21st Annual Meeting","first-page":"2528","article-title":"In vivo saturation transfer imaging of nuclear overhauser effect from aromatic and aliphatic protons: implication to APT quantification","author":"Jin","year":"2013"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib17","doi-asserted-by":"crossref","first-page":"760","DOI":"10.1002\/mrm.24315","article-title":"MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T","volume":"69","author":"Jin","year":"2013","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib18","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1016\/j.neuroimage.2017.06.007","article-title":"Enhancing sensitivity of pH-weighted MRI with combination of amide and guanidyl CEST","volume":"157","author":"Jin","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib19","doi-asserted-by":"crossref","first-page":"1579","DOI":"10.1002\/mrm.23141","article-title":"In vivo three-dimensional whole-brain pulsed steady-state chemical exchange saturation transfer at 7 T","volume":"67","author":"Jones","year":"2012","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib20","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.neuroimage.2013.03.047","article-title":"Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T","volume":"77","author":"Jones","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib21","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1007\/s11307-014-0784-6","article-title":"Measuring extracellular pH in a lung fibrosis model with acidoCEST MRI","volume":"17","author":"Jones","year":"2015","journal-title":"Mol. Imag. Biol."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib22","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1002\/mrm.24641","article-title":"Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer","volume":"71","author":"Kogan","year":"2014","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib23","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1002\/cmmi.355","article-title":"CMR2009: 11.02: evaluating iopamidol as pH-responsive CEST agent at 3 and 7 T","volume":"4","author":"Longo","year":"2009","journal-title":"Contrast Media Mol. Imaging"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib24","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1002\/mrm.24513","article-title":"Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent","volume":"70","author":"Longo","year":"2013","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib25","doi-asserted-by":"crossref","first-page":"1239","DOI":"10.1002\/mrm.22813","article-title":"Magnetization exchange with water and T1 relaxation of the downfield resonances in human brain spectra at 3.0 T","volume":"65","author":"MacMillan","year":"2011","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib26","doi-asserted-by":"crossref","first-page":"690","DOI":"10.1038\/jcbfm.2014.12","article-title":"Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI","volume":"34","author":"McVicar","year":"2014","journal-title":"J.\u00a0Cerebr. Blood Flow Metabol."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib27","doi-asserted-by":"crossref","first-page":"1270","DOI":"10.1038\/jcbfm.2013.79","article-title":"Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI","volume":"33","author":"Nasrallah","year":"2013","journal-title":"J.\u00a0Cerebr. Blood Flow Metabol."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib28","doi-asserted-by":"crossref","first-page":"801","DOI":"10.1002\/mrm.25677","article-title":"Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays","volume":"75","author":"Pohmann","year":"2016","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib29","doi-asserted-by":"crossref","first-page":"1402","DOI":"10.1002\/nbm.3367","article-title":"Relaxation-compensated CEST-MRI at 7\u2009T for mapping of creatine content and pH\u2013preliminary application in human muscle tissue in vivo","volume":"28","author":"Rerich","year":"2015","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib30","doi-asserted-by":"crossref","first-page":"1375","DOI":"10.1002\/mrm.25467","article-title":"Functional molecular imaging of tumors by chemical exchange saturation transfer MRI of 3-O-Methyl-D-glucose","volume":"72","author":"Rivlin","year":"2014","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib31","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1002\/mrm.26370","article-title":"Adiabatically prepared spin-lock approach for T1\u03c1-based dynamic glucose enhanced MRI at ultrahigh fields","volume":"78","author":"Schuenke","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib32","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1002\/mrm.26133","article-title":"Simultaneous mapping of water shift and B1 (WASABI)-Application to field-Inhomogeneity correction of CEST MRI data","volume":"77","author":"Schuenke","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib33","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.neuroimage.2017.10.053","article-title":"The z-spectrum from human blood at 7T","volume":"167","author":"Shah","year":"2018","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib34","doi-asserted-by":"crossref","first-page":"870","DOI":"10.1002\/mrm.24726","article-title":"16-channel dual-row transmit array in combination with a 31-element receive array for human brain imaging at 9.4 T","volume":"71","author":"Shajan","year":"2014","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib35","doi-asserted-by":"crossref","first-page":"588","DOI":"10.1002\/mrm.23250","article-title":"Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T","volume":"68","author":"Singh","year":"2012","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib36","doi-asserted-by":"crossref","first-page":"2216","DOI":"10.1002\/mrm.26624","article-title":"B1+ inhomogeneity mitigation in CEST using parallel transmission","volume":"78","author":"Tse","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib37","doi-asserted-by":"crossref","first-page":"1067","DOI":"10.1038\/nm.3252","article-title":"In Vivo imaging of glucose uptake and metabolism in tumors","volume":"19","author":"Walker-Samuel","year":"2013","journal-title":"Nat. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib38","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1006\/jmre.1999.1956","article-title":"A\u00a0new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)","volume":"143","author":"Ward","year":"2000","journal-title":"J.\u00a0Magn. Reson."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib39","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1002\/nbm.3283","article-title":"Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7\u2009T","volume":"28","author":"Windschuh","year":"2015","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib40","volume":"vol 292","author":"W\u00fcthrich","year":"1986"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib41","doi-asserted-by":"crossref","first-page":"105","DOI":"10.18383\/j.tom.2015.00175","article-title":"Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients","volume":"1","author":"Xu","year":"2015","journal-title":"Tomography"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib42","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0163765","article-title":"A\u00a0potential magnetic resonance imaging technique based on chemical exchange saturation transfer for in vivo \u03b3-aminobutyric Acid imaging","volume":"11","author":"Yan","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib43","doi-asserted-by":"crossref","first-page":"1815","DOI":"10.1002\/nbm.3021","article-title":"MR imaging of protein folding in vitro employing nuclear-Overhauser-mediated saturation transfer","volume":"26","author":"Zaiss","year":"2013","journal-title":"NMR Biomed."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib44","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.neuroimage.2015.02.040","article-title":"Relaxation-compensated CEST-MRI of the human brain at 7T: unbiased insight into NOE and amide signal changes in human glioblastoma","volume":"112","author":"Zaiss","year":"2015","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib45","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1002\/mrm.26100","article-title":"Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma","volume":"77","author":"Zaiss","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib46","article-title":"Snapshot-CEST: optimizing spiral-centric reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4T","author":"Zaiss","year":"2017","journal-title":"NBM (NMR Biomed.)"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib47","doi-asserted-by":"crossref","first-page":"1100","DOI":"10.1016\/j.mri.2016.05.002","article-title":"A\u00a0new NOE-mediated MT signal at around \u22121.6ppm for detecting ischemic stroke in rat brain","volume":"34","author":"Zhang","year":"2016","journal-title":"Magn. Reson. Imag."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib48","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1002\/mrm.26802","article-title":"Assignment of the molecular origins of CEST signals at 2\u2009ppm in rat brain","volume":"78","author":"Zhang","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib49","doi-asserted-by":"crossref","first-page":"588","DOI":"10.1002\/mrm.26396","article-title":"MR imaging of a novel NOE-mediated magnetization transfer with water in rat brain at 9.4\u2009T","volume":"78","author":"Zhang","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib50","doi-asserted-by":"crossref","first-page":"1085","DOI":"10.1038\/nm907","article-title":"Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI","volume":"9","author":"Zhou","year":"2003","journal-title":"Nat. Med."},{"key":"10.1016\/j.neuroimage.2018.06.026_bib51","series-title":"A\u00a0New NOE-mediated MT Signal at Around \u22121.6ppm for Detecting Ischemic Stroke in Rat Brain","author":"Zu","year":"2017"},{"key":"10.1016\/j.neuroimage.2018.06.026_bib52","doi-asserted-by":"crossref","DOI":"10.1002\/nbm.3756","article-title":"Chemical exchange rotation transfer imaging of intermediate-exchanging amines at 2 ppm","volume":"30","author":"Zu","year":"2017","journal-title":"NMR Biomed."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918305330?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918305330?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T13:53:35Z","timestamp":1720360415000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811918305330"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,10]]},"references-count":52,"alternative-id":["S1053811918305330"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.06.026","relation":{},"ISSN":["1053-8119"],"issn-type":[{"value":"1053-8119","type":"print"}],"subject":[],"published":{"date-parts":[[2018,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Chemical exchange saturation transfer MRI contrast in the human brain at 9.4\u202fT","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.06.026","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}