{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T11:19:08Z","timestamp":1726226348157},"reference-count":82,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,8,1]],"date-time":"2018-08-01T00:00:00Z","timestamp":1533081600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001349","name":"National Medical Research Council, Singapore","doi-asserted-by":"crossref","award":["NMRC\/CBRG\/0088\/2015"],"id":[{"id":"10.13039\/501100001349","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001350","name":"Ministry of Health, Singapore","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001350","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2018,8]]},"DOI":"10.1016\/j.neuroimage.2018.04.014","type":"journal-article","created":{"date-parts":[[2018,4,9]],"date-time":"2018-04-09T21:54:33Z","timestamp":1523310873000},"page":"1-10","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Carrying the past to the future: Distinct brain networks underlie individual differences in human spatial working memory capacity"],"prefix":"10.1016","volume":"176","author":[{"given":"Siwei","family":"Liu","sequence":"first","affiliation":[]},{"given":"Jia-Hou","family":"Poh","sequence":"additional","affiliation":[]},{"given":"Hui Li","family":"Koh","sequence":"additional","affiliation":[]},{"given":"Kwun Kei","family":"Ng","sequence":"additional","affiliation":[]},{"given":"Yng Miin","family":"Loke","sequence":"additional","affiliation":[]},{"given":"Joseph Kai Wei","family":"Lim","sequence":"additional","affiliation":[]},{"given":"Joanna Su Xian","family":"Chong","sequence":"additional","affiliation":[]},{"given":"Juan","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2018.04.014_bib1","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.neuroimage.2014.12.046","article-title":"Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?","volume":"108","author":"Alavash","year":"2015","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib2","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1006\/nimg.2000.0599","article-title":"A\u00a0method for removing imaging artifact from continuous EEG recorded during functional MRI","volume":"12","author":"Allen","year":"2000","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib3","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1006\/nimg.1998.0361","article-title":"Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction","volume":"8","author":"Allen","year":"1998","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib4","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1162\/jocn.2010.21451","article-title":"Failure to engage spatial working memory contributes to age-related declines in visuomotor learning","volume":"23","author":"Anguera","year":"2010","journal-title":"J.\u00a0Cogn. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib5","doi-asserted-by":"crossref","first-page":"2305","DOI":"10.1016\/j.neuropsychologia.2013.06.031","article-title":"Visuo\u2013spatial working memory is an important source of domain-general vulnerability in the development of arithmetic cognition","volume":"51","author":"Ashkenazi","year":"2013","journal-title":"Neuropsychologia"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib6","doi-asserted-by":"crossref","first-page":"1252","DOI":"10.1093\/cercor\/bht320","article-title":"Intraparietal sulcus activity and functional connectivity supporting spatial working memory manipulation","volume":"25","author":"Bray","year":"2015","journal-title":"Cereb. Cortex"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib7","doi-asserted-by":"crossref","first-page":"2261","DOI":"10.1093\/cercor\/bhq293","article-title":"Microstructure of frontoparietal connections predicts cortical responsivity and working memory performance","volume":"21","author":"Burzynska","year":"2011","journal-title":"Cereb. Cortex"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib8","doi-asserted-by":"crossref","first-page":"830","DOI":"10.1038\/nn.2823","article-title":"Differential coupling of visual cortex with default network or frontal-parietal network based on goals","volume":"14","author":"Chadick","year":"2011","journal-title":"Nat. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib9","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1038\/nrn.2016.43","article-title":"The neuroscience of working memory capacity and training","volume":"17","author":"Constantinidis","year":"2016","journal-title":"Nat. Rev. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib10","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1177\/0963721409359277","article-title":"The magical mystery four: how is working memory capacity limited, and why?","volume":"19","author":"Cowan","year":"2010","journal-title":"Curr. Dir. Psychol. Sci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib11","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1017\/S0140525X01003922","article-title":"The magical number 4 in short-term memory: a reconsideration of mental storage capacity","volume":"24","author":"Cowan","year":"2001","journal-title":"Behav. Brain Sci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib12","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.cogpsych.2004.12.001","article-title":"On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes","volume":"51","author":"Cowan","year":"2005","journal-title":"Cogn. Psychol."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib13","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1006\/cbmr.1996.0014","article-title":"AFNI: software for analysis and visualization of functional magnetic resonance neuroimages","volume":"29","author":"Cox","year":"1996","journal-title":"Comput. Biomed. Res. Int. J."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib14","doi-asserted-by":"crossref","first-page":"1587","DOI":"10.1093\/cercor\/bht352","article-title":"The role of fronto-parietal and fronto-striatal networks in the development of working memory: a longitudinal study","volume":"25","author":"Darki","year":"2015","journal-title":"Cereb. Cortex"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib15","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.neuroimage.2016.05.051","article-title":"Exploring the role of the posterior middle temporal gyrus in semantic cognition: integration of anterior temporal lobe with executive processes","volume":"137","author":"Davey","year":"2016","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib16","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1080\/87565641.2012.697503","article-title":"Applying principal components analysis to event-related potentials: a tutorial","volume":"37","author":"Dien","year":"2012","journal-title":"Dev. Neuropsychol."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib17","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1111\/j.1469-8986.2009.00885.x","article-title":"Evaluating two-step PCA of ERP data with geomin, infomax, oblimin, promax, and varimax rotations","volume":"47","author":"Dien","year":"2010","journal-title":"Psychophysiology"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib18","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1177\/155005940603700405","article-title":"Event-related potential measures of visual working memory","volume":"37","author":"Drew","year":"2006","journal-title":"Clin. EEG Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib19","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1016\/j.biopsych.2008.05.015","article-title":"The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-O-methyltransferase genotypes and schizophrenia","volume":"64","author":"Durstewitz","year":"2008","journal-title":"Biol. Psychiatry"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib20","doi-asserted-by":"crossref","first-page":"2894","DOI":"10.1523\/JNEUROSCI.1376-14.2016","article-title":"Different roles of direct and indirect frontoparietal pathways for individual working memory capacity","volume":"36","author":"Ekman","year":"2016","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib21","doi-asserted-by":"crossref","first-page":"893","DOI":"10.1016\/j.neuron.2015.07.013","article-title":"Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory","volume":"87","author":"Ester","year":"2015","journal-title":"Neuron"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib22","doi-asserted-by":"crossref","first-page":"14009","DOI":"10.1523\/JNEUROSCI.5003-14.2015","article-title":"\u03b1 power modulation and event-related slow wave provide dissociable correlates of visual working memory","volume":"35","author":"Fukuda","year":"2015","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib23","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.schres.2010.06.008","article-title":"Spatial working memory in individuals at high risk for psychosis: longitudinal fMRI study","volume":"123","author":"Fusar-Poli","year":"2010","journal-title":"Schizophr. Res."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib24","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.neuroimage.2015.02.044","article-title":"Differences between target and non-target probe processing \u2014 combined evidence from fMRI, EEG and fMRI-constrained source analysis","volume":"111","author":"Galashan","year":"2015","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib25","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.tics.2011.11.014","article-title":"Top-down modulation: bridging selective attention and working memory","volume":"16","author":"Gazzaley","year":"2012","journal-title":"Trends Cogn. Sci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib26","doi-asserted-by":"crossref","first-page":"1536","DOI":"10.1002\/hbm.21306","article-title":"Using spatial multiple regression to identify intrinsic connectivity networks involved in working memory performance","volume":"33","author":"Gordon","year":"2012","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib27","doi-asserted-by":"crossref","first-page":"8502","DOI":"10.1523\/JNEUROSCI.0208-11.2011","article-title":"Dynamic updating of working memory resources for visual objects","volume":"31","author":"Gorgoraptis","year":"2011","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib28","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1007\/s00429-013-0521-y","article-title":"Crosslinking EEG time\u2013frequency decomposition and fMRI in error monitoring","volume":"219","author":"Hoffmann","year":"2014","journal-title":"Brain Struct. Funct."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.dcn.2015.10.007","article-title":"Load-related brain activation predicts spatial working memory performance in youth aged 9\u201312 and is associated with executive function at earlier ages","volume":"17","author":"Huang","year":"2016","journal-title":"Dev. Cogn. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib30","doi-asserted-by":"crossref","first-page":"782","DOI":"10.1016\/j.neuroimage.2011.09.015","article-title":"FSL","volume":"62","author":"Jenkinson","year":"2012","journal-title":"NeuroImage"},{"issue":"Part 1","key":"10.1016\/j.neuroimage.2018.04.014_bib31","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.neuroimage.2013.05.114","article-title":"EEG\u2013fMRI integration for the study of human brain function","volume":"102","author":"Jorge","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib32","doi-asserted-by":"crossref","first-page":"1600","DOI":"10.1016\/j.neuroimage.2006.09.024","article-title":"10\/20, 10\/10, and 10\/5 systems revisited: their validity as relative head-surface-based positioning systems","volume":"34","author":"Jurcak","year":"2007","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib33","doi-asserted-by":"crossref","first-page":"637","DOI":"10.3758\/BF03196323","article-title":"The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective","volume":"9","author":"Kane","year":"2002","journal-title":"Psychon. Bull. Rev."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib34","doi-asserted-by":"crossref","first-page":"2307","DOI":"10.1016\/S1388-2457(03)00241-4","article-title":"Optimizing PCA methodology for ERP component identification and measurement: theoretical rationale and empirical evaluation","volume":"114","author":"Kayser","year":"2003","journal-title":"Clin. Neurophysiol."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib35","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1007\/s10548-013-0310-1","article-title":"A\u00a0tutorial on data-driven methods for statistically assessing ERP topographies","volume":"27","author":"Koenig","year":"2013","journal-title":"Brain Topogr."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib36","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1007\/s12264-014-1503-7","article-title":"Prefrontal cortex and sensory cortices during working memory: quantity and quality","volume":"31","author":"Ku","year":"2015","journal-title":"Neurosci. Bull."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib37","doi-asserted-by":"crossref","first-page":"1171","DOI":"10.1523\/JNEUROSCI.1765-13.2014","article-title":"Electroencephalography correlates of spatial working memory deficits in attention-deficit\/hyperactivity disorder: vigilance, encoding, and maintenance","volume":"34","author":"Lenartowicz","year":"2014","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib38","doi-asserted-by":"crossref","first-page":"1518","DOI":"10.1016\/j.neuroimage.2003.07.021","article-title":"Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network","volume":"20","author":"Linden","year":"2003","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib39","doi-asserted-by":"crossref","first-page":"599","DOI":"10.3389\/fnhum.2016.00599","article-title":"Better not to know? Emotion regulation fails to benefit from affective cueing","volume":"10","author":"Liu","year":"2016","journal-title":"Front. Hum. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib40","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1016\/j.tics.2013.06.006","article-title":"Visual working memory capacity: from psychophysics and neurobiology to individual differences","volume":"17","author":"Luck","year":"2013","journal-title":"Trends Cogn. Sci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib41","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1038\/nn.3655","article-title":"Changing concepts of working memory","volume":"17","author":"Ma","year":"2014","journal-title":"Nat. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib42","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.ijpsycho.2006.05.007","article-title":"Correlating digit span performance and event-related potentials to assess working memory","volume":"62","author":"Marchand","year":"2006","journal-title":"Int. J. Psychophysiol."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib43","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1007\/s10548-014-0361-y","article-title":"Frontal midline theta reflects individual task performance in a working memory task","volume":"28","author":"Maurer","year":"2015","journal-title":"Brain Topogr."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib44","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0039447","article-title":"Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory","volume":"7","author":"Michels","year":"2012","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib45","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.brainres.2008.01.059","article-title":"Spatio-temporal dynamics of neural mechanisms underlying component operations in working memory","volume":"1206","author":"Miller","year":"2008","journal-title":"Brain Res."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib46","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.neuroimage.2015.02.019","article-title":"Cortical networks dynamically emerge with the interplay of slow and fast oscillations for memory of a natural scene","volume":"111","author":"Mizuhara","year":"2015","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib47","doi-asserted-by":"crossref","first-page":"22552","DOI":"10.1073\/pnas.0908238106","article-title":"Performance level modulates adult age differences in brain activation during spatial working memory","volume":"106","author":"Nagel","year":"2009","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib48","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/j.neuroimage.2016.03.029","article-title":"Reduced functional segregation between the default mode network and the executive control network in healthy older adults: a longitudinal study","volume":"133","author":"Ng","year":"2016","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib49","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.neuroimage.2013.02.016","article-title":"Internal ventilation system of MR scanners induces specific EEG artifact during simultaneous EEG-fMRI","volume":"74","author":"Nierhaus","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib50","doi-asserted-by":"crossref","first-page":"7580","DOI":"10.1073\/pnas.0913113107","article-title":"Neuronal synchrony reveals working memory networks and predicts individual memory capacity","volume":"107","author":"Palva","year":"2010","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib51","doi-asserted-by":"crossref","first-page":"5013","DOI":"10.1523\/JNEUROSCI.5592-10.2011","article-title":"Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention","volume":"31","author":"Palva","year":"2011","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib52","doi-asserted-by":"crossref","first-page":"975","DOI":"10.1001\/archpsyc.1992.01820120063009","article-title":"SChizophrenics show spatial working memory deficits","volume":"49","author":"Park","year":"1992","journal-title":"Arch. Gen. Psychiatry"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib53","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0123354","article-title":"The default mode network and the working memory network are not anti-correlated during all phases of a working memory task","volume":"10","author":"Piccoli","year":"2015","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib54","doi-asserted-by":"crossref","first-page":"165","DOI":"10.3389\/fnhum.2014.00165","article-title":"Effects of load and maintenance duration on the time course of information encoding and retrieval in working memory: from perceptual analysis to post-categorization processes","volume":"8","author":"Pinal","year":"2014","journal-title":"Front. Hum. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib55","doi-asserted-by":"crossref","first-page":"146","DOI":"10.3389\/fncom.2014.00146","article-title":"Granger causality analysis reveals distinct spatio-temporal connectivity patterns in motor and perceptual visuo-spatial working memory","volume":"8","author":"Protopapa","year":"2014","journal-title":"Front. Comput. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib56","first-page":"502","article-title":"The frontoparietal attention network of the human brain action, saliency, and a priority map of the environment","volume":"18","author":"Ptak","year":"2012","journal-title":"Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib57","doi-asserted-by":"crossref","first-page":"676","DOI":"10.1073\/pnas.98.2.676","article-title":"A\u00a0default mode of brain function","volume":"98","author":"Raichle","year":"2001","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib58","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1186\/1471-244X-13-125","article-title":"Reduced P300 amplitude during retrieval on a spatial working memory task in a community sample of adolescents who report psychotic symptoms","volume":"13","author":"Rawdon","year":"2013","journal-title":"BMC Psychiatry"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib59","doi-asserted-by":"crossref","first-page":"830","DOI":"10.1016\/j.neuroimage.2011.11.050","article-title":"Modelling neural correlates of working memory: a coordinate-based meta-analysis","volume":"60","author":"Rottschy","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib60","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.tics.2013.10.010","article-title":"Working memory and neural oscillations: alpha\u2013gamma versus theta\u2013gamma codes for distinct WM information?","volume":"18","author":"Roux","year":"2014","journal-title":"Trends Cogn. Sci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib61","doi-asserted-by":"crossref","first-page":"12411","DOI":"10.1523\/JNEUROSCI.0421-12.2012","article-title":"Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory","volume":"32","author":"Roux","year":"2012","journal-title":"J.\u00a0Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib62","doi-asserted-by":"crossref","first-page":"793","DOI":"10.1002\/hbm.20309","article-title":"Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload","volume":"28","author":"Sammer","year":"2007","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib63","doi-asserted-by":"crossref","first-page":"14743","DOI":"10.1038\/ncomms14743","article-title":"Preserved cognitive functions with age are determined by domain-dependent shifts in network responsivity","volume":"8","author":"Samu","year":"2017","journal-title":"Nat. Commun."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib64","doi-asserted-by":"crossref","first-page":"1846","DOI":"10.1016\/j.cub.2009.08.062","article-title":"Brain oscillatory substrates of visual short-term memory capacity","volume":"19","author":"Sauseng","year":"2009","journal-title":"Curr. Biol."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib65","doi-asserted-by":"crossref","first-page":"2174","DOI":"10.1016\/j.cub.2014.07.066","article-title":"Reconstructions of information in visual spatial working memory degrade with memory load","volume":"24","author":"Sprague","year":"2014","journal-title":"Curr. Biol."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib66","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.tics.2013.12.001","article-title":"Revisiting the role of persistent neural activity during working memory","volume":"18","author":"Sreenivasan","year":"2014","journal-title":"Trends Cogn. Sci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib67","doi-asserted-by":"crossref","first-page":"1141","DOI":"10.1162\/jocn_a_00556","article-title":"Distributed and dynamic storage of working memory stimulus information in extrastriate cortex","volume":"26","author":"Sreenivasan","year":"2014","journal-title":"J.\u00a0Cogn. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib68","doi-asserted-by":"crossref","first-page":"652","DOI":"10.1126\/science.153.3736.652","article-title":"High-speed scanning in human memory","volume":"153","author":"Sternberg","year":"1966","journal-title":"Science"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib69","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0030468","article-title":"Functional brain network modularity captures inter- and intra-individual variation in working memory capacity","volume":"7","author":"Stevens","year":"2012","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib70","doi-asserted-by":"crossref","first-page":"751","DOI":"10.1038\/nature02466","article-title":"Capacity limit of visual short-term memory in human posterior parietal cortex","volume":"428","author":"Todd","year":"2004","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib71","series-title":"Quantitative EEG Analysis Methods and Clinical Applications","author":"Tong","year":"2009"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib72","doi-asserted-by":"crossref","DOI":"10.1002\/hbm.20531","article-title":"Functional connectivity of default mode network components: correlation, anticorrelation, and causality","volume":"30","author":"Uddin","year":"2009","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib73","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cogpsych.2014.01.003","article-title":"Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval","volume":"71","author":"Unsworth","year":"2014","journal-title":"Cogn. Psychol."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib74","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/S1053-8119(02)00049-6","article-title":"Maintenance versus manipulation in verbal working memory revisited: an fMRI study","volume":"18","author":"Veltman","year":"2003","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib75","doi-asserted-by":"crossref","first-page":"303","DOI":"10.3389\/fnagi.2014.00303","article-title":"An exploratory study of the effects of spatial working-memory load on prefrontal activation in low- and high-performing elderly","volume":"6","author":"Vermeij","year":"2014","journal-title":"Front. Aging Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib76","doi-asserted-by":"crossref","first-page":"748","DOI":"10.1038\/nature02447","article-title":"Neural activity predicts individual differences in visual working memory capacity","volume":"428","author":"Vogel","year":"2004","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib77","doi-asserted-by":"crossref","first-page":"500","DOI":"10.1038\/nature04171","article-title":"Neural measures reveal individual differences in controlling access to working memory","volume":"438","author":"Vogel","year":"2005","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2018.04.014_bib78","doi-asserted-by":"crossref","first-page":"9653","DOI":"10.1073\/pnas.1523980113","article-title":"Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states","volume":"113","author":"Wang","year":"2016","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib79","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.neulet.2016.09.047","article-title":"The different oscillation patterns of alpha band in the early and later stages of working memory maintenance","volume":"633","author":"Xie","year":"2016","journal-title":"Neurosci. Lett."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib80","doi-asserted-by":"crossref","first-page":"3059","DOI":"10.1523\/JNEUROSCI.4621-08.2009","article-title":"Neural suppression of irrelevant information underlies optimal working memory performance","volume":"29","author":"Zanto","year":"2009","journal-title":"J.\u00a0Neurosci. Off. J. Soc. Neurosci."},{"key":"10.1016\/j.neuroimage.2018.04.014_bib81","author":"Zhang"},{"issue":"Part A","key":"10.1016\/j.neuroimage.2018.04.014_bib82","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.visres.2015.01.028","article-title":"Principal component analysis of the memory load effect in a change detection task","volume":"110","author":"Zhou","year":"2015","journal-title":"Vis. Res."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918303045?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918303045?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,6,12]],"date-time":"2020-06-12T08:42:44Z","timestamp":1591951364000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811918303045"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8]]},"references-count":82,"alternative-id":["S1053811918303045"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.04.014","relation":{},"ISSN":["1053-8119"],"issn-type":[{"value":"1053-8119","type":"print"}],"subject":[],"published":{"date-parts":[[2018,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Carrying the past to the future: Distinct brain networks underlie individual differences in human spatial working memory capacity","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.04.014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}