{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T15:27:59Z","timestamp":1726500479577},"reference-count":176,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000002","name":"NIH","doi-asserted-by":"publisher","award":["MH100217","MH107815","MH108914","MH109773","NS093842"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2019,1]]},"DOI":"10.1016\/j.neuroimage.2018.03.042","type":"journal-article","created":{"date-parts":[[2018,3,21]],"date-time":"2018-03-21T07:58:17Z","timestamp":1521619097000},"page":"906-925","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":129,"special_numbering":"C","title":["Computational neuroanatomy of baby brains: A review"],"prefix":"10.1016","volume":"185","author":[{"given":"Gang","family":"Li","sequence":"first","affiliation":[]},{"given":"Li","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Pew-Thian","family":"Yap","sequence":"additional","affiliation":[]},{"given":"Fan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Zhengwang","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Yu","family":"Meng","sequence":"additional","affiliation":[]},{"given":"Pei","family":"Dong","sequence":"additional","affiliation":[]},{"given":"Jaeil","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Islem","family":"Rekik","sequence":"additional","affiliation":[]},{"given":"Weili","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Dinggang","family":"Shen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2018.03.042_bib1","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.neuroimage.2015.12.026","article-title":"Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants","volume":"128","author":"Akazawa","year":"2016","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib2","doi-asserted-by":"crossref","first-page":"1237","DOI":"10.1002\/mrm.23101","article-title":"Hybrid prospective and retrospective head motion correction to mitigate cross-calibration errors","volume":"67","author":"Aksoy","year":"2012","journal-title":"Magn Reson Med"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib3","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1016\/j.neuroimage.2016.09.068","article-title":"A\u00a0new neonatal cortical and subcortical brain atlas: the Melbourne Children's Regional Infant Brain (M-CRIB) atlas","volume":"147","author":"Alexander","year":"2017","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib4","doi-asserted-by":"crossref","first-page":"726","DOI":"10.1016\/j.neuroimage.2009.02.018","article-title":"Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy","volume":"46","author":"Aljabar","year":"2009","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib5","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1016\/j.neuroimage.2008.07.060","article-title":"Infant brain probability templates for MRI segmentation and normalization","volume":"43","author":"Altaye","year":"2008","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib6","doi-asserted-by":"crossref","first-page":"e81895","DOI":"10.1371\/journal.pone.0081895","article-title":"Automatic segmentation of eight tissue classes in neonatal brain MRI","volume":"8","author":"Anbeek","year":"2013","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib7","doi-asserted-by":"crossref","first-page":"965","DOI":"10.1002\/mrm.20274","article-title":"New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter","volume":"52","author":"Assaf","year":"2004","journal-title":"Magn Reson Med"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib8","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1002\/(SICI)1522-2594(199901)41:1<163::AID-MRM23>3.0.CO;2-9","article-title":"Automatic compensation of motion artifacts in MRI","volume":"41","author":"Atkinson","year":"1999","journal-title":"Magn Reson Med"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib9","doi-asserted-by":"crossref","DOI":"10.1038\/sdata.2015.3","article-title":"The pediatric template of brain perfusion","volume":"2","author":"Avants","year":"2015","journal-title":"Scientific data"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib10","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1016\/j.neuroimage.2010.06.072","article-title":"Cerebral cortical folding analysis with multivariate modeling and testing: studies on gender differences and neonatal development","volume":"53","author":"Awate","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib11","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0047816","article-title":"Population differences in brain morphology and microstructure among Chinese, Malay, and indian neonates","volume":"7","author":"Bai","year":"2012","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib12","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.cmpb.2007.08.006","article-title":"Topology correction of segmented medical images using a fast marching algorithm","volume":"88","author":"Bazin","year":"2007","journal-title":"Comput Methods Programs Biomed"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib13","article-title":"Neonatal brain tissue classification with morphological adaptation and unified segmentation","volume":"12","author":"Beare","year":"2016","journal-title":"Frontiers in neuroinformatics"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib14","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.media.2005.09.004","article-title":"Intensity non-uniformity correction in MRI: existing methods and their validation","volume":"10","author":"Belaroussi","year":"2006","journal-title":"Med Image Anal"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib15","doi-asserted-by":"crossref","first-page":"2772","DOI":"10.1002\/hbm.23536","article-title":"Toward the automatic quantification of in utero brain development in 3D structural MRI: a review","author":"Benkarim","year":"2017","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib16","series-title":"Similarity Metrics for Groupwise Non-rigid Registration. Medical Image Computing and Computer-assisted Intervention \u2013 MICCAI 2007","first-page":"544","author":"Bhatia","year":"2007"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib17","article-title":"Parcellation of the healthy neonatal brain into 107 regions using atlas propagation through intermediate time points in childhood","volume":"220","author":"Blesa","year":"2016","journal-title":"Frontiers in neuroscience"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib18","series-title":"IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016)","first-page":"775","article-title":"Construction of a neonatal cortical surface atlas using multimodal surface matching","author":"Bozek","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib19","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Machine Learning"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib20","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0115229","article-title":"Gestational age and neonatal brain microstructure in term born infants: a birth cohort study","volume":"9","author":"Broekman","year":"2014","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib21","doi-asserted-by":"crossref","first-page":"1365","DOI":"10.1002\/mrm.26796","article-title":"Three-dimensional motion corrected sensitivity encoding reconstruction for multi-shot multi-slice MRI: application to neonatal brain imaging","volume":"79","author":"Cordero-Grande","year":"2018","journal-title":"Magn Reson Med"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib22","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s12021-012-9164-z","article-title":"iBEAT: a toolbox for infant brain magnetic resonance image processing","volume":"11","author":"Dai","year":"2013","journal-title":"Neuroinformatics"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib23","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1006\/nimg.1998.0395","article-title":"Cortical surface-based analysis. I. Segmentation and surface reconstruction","volume":"9","author":"Dale","year":"1999","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib24","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1007\/s00247-013-2752-8","article-title":"Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep","volume":"44","author":"Dean","year":"2014","journal-title":"Pediatric Radiology"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib25","doi-asserted-by":"crossref","first-page":"968","DOI":"10.1016\/j.neuroimage.2006.01.021","article-title":"An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest","volume":"31","author":"Desikan","year":"2006","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/fninf.2017.00001","article-title":"Whole brain magnetic resonance image atlases: a systematic review of existing atlases and caveats for use in population imaging","volume":"11","author":"Dickie","year":"2017","journal-title":"Frontiers in neuroinformatics"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib27","series-title":"Multi-atlas and Multi-modal Hippocampus Segmentation for Infant MR Brain Images by Propagating Anatomical Labels on Hypergraph. International Workshop on Patch-based Techniques in Medical Imaging (MICCAI 2015)","first-page":"188","author":"Dong","year":"2015"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib28","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.neucom.2016.05.107","article-title":"Scalable joint segmentation and registration framework for infant brain images","volume":"229","author":"Dong","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib29","series-title":"Exploring Gyral Patterns of Infant Cortical Folding Based on Multi-view Curvature Information. International Conference on Medical Image Computing and Computer-assisted Intervention","first-page":"12","author":"Duan","year":"2017"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib30","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.neuroimage.2010.03.054","article-title":"Structural asymmetries of perisylvian regions in the preterm newborn","volume":"52","author":"Dubois","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib31","series-title":"Brain Mapping: an Encyclopedic Reference","first-page":"11","article-title":"Fetal and postnatal development of the cortex: MRI and genetics","author":"Dubois","year":"2015"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib32","article-title":"Topographic organization of the cerebral cortex and brain cartography","author":"Eickhoff","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib33","doi-asserted-by":"crossref","first-page":"1862","DOI":"10.1016\/j.neuroimage.2010.07.025","article-title":"Brain anatomical networks in early human brain development","volume":"54","author":"Fan","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib34","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.neuroimage.2011.06.006","article-title":"White matter characterization with diffusional kurtosis imaging","volume":"58","author":"Fieremans","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib35","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1109\/42.906426","article-title":"Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex","volume":"20","author":"Fischl","year":"2001","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib36","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1002\/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4","article-title":"High-resolution intersubject averaging and a coordinate system for the cortical surface","volume":"8","author":"Fischl","year":"1999","journal-title":"Human brain mapping"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib37","series-title":"Geodesic Shape Regression in the Framework of Currents. Information Processing in Medical Imaging","first-page":"718","author":"Fishbaugh","year":"2013"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib38","doi-asserted-by":"crossref","first-page":"S102","DOI":"10.1016\/S1053-8119(09)70884-5","article-title":"Unbiased nonlinear average age-appropriate brain templates from birth to adulthood","volume":"47","author":"Fonov","year":"2009","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib39","first-page":"1795","article-title":"Structural and maturational covariance in early childhood brain development","volume":"27","author":"Geng","year":"2017","journal-title":"Cerebral Cortex"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib40","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1176\/appi.ajp.2010.09101492","article-title":"Prenatal and neonatal brain structure and white matter maturation in children at high risk for schizophrenia","volume":"167","author":"Gilmore","year":"2010","journal-title":"American Journal of Psychiatry"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib41","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1038\/nrn.2018.1","article-title":"Imaging structural and functional brain development in early childhood","volume":"19","author":"Gilmore","year":"2018","journal-title":"Nature Reviews Neuroscience"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib42","doi-asserted-by":"crossref","first-page":"2478","DOI":"10.1093\/cercor\/bhr327","article-title":"Longitudinal development of cortical and subcortical gray matter from birth to 2 years","volume":"22","author":"Gilmore","year":"2011","journal-title":"Cerebral cortex"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib43","doi-asserted-by":"crossref","first-page":"716","DOI":"10.1016\/j.neuroimage.2011.06.016","article-title":"A\u00a0robust cerebral asymmetry in the infant brain: the rightward superior temporal sulcus","volume":"58","author":"Glasel","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib44","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1038\/nature18933","article-title":"A\u00a0multi-modal parcellation of human cerebral cortex","volume":"536","author":"Glasser","year":"2016","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib45","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.neuroimage.2013.04.127","article-title":"The minimal preprocessing pipelines for the Human Connectome Project","volume":"80","author":"Glasser","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib46","doi-asserted-by":"crossref","first-page":"11597","DOI":"10.1523\/JNEUROSCI.2180-11.2011","article-title":"Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI","volume":"31","author":"Glasser","year":"2011","journal-title":"Journal of Neuroscience"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib47","doi-asserted-by":"crossref","first-page":"1499","DOI":"10.1016\/j.neuroimage.2012.05.083","article-title":"Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants","volume":"62","author":"Gousias","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib48","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0059990","article-title":"Magnetic resonance imaging of the newborn brain: automatic segmentation of brain images into 50 anatomical regions","volume":"8","author":"Gousias","year":"2013","journal-title":"PloS one"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib49","series-title":"2010 IEEE International Conference on Imaging Systems and Techniques (IST)","first-page":"290","article-title":"Atlas selection strategy for automatic segmentation of pediatric brain MRIs into 83 ROIs","author":"Gousias","year":"2010"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib50","doi-asserted-by":"crossref","first-page":"672","DOI":"10.1016\/j.neuroimage.2007.11.034","article-title":"Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest","volume":"40","author":"Gousias","year":"2008","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib51","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1016\/j.media.2012.07.006","article-title":"Morphology-driven automatic segmentation of MR images of the neonatal brain","volume":"16","author":"Gui","year":"2012","journal-title":"Med Image Anal"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib52","series-title":"International Workshop on Patch-based Techniques in Medical Imaging (MICCAI 2016)","first-page":"1","article-title":"Automatic segmentation of Hippocampus for longitudinal infant brain MR image sequence by spatial-temporal hypergraph learning","author":"Guo","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib53","series-title":"International Conference on Medical Image Computing and Computer-assisted Intervention. NIH Public Access","first-page":"308","article-title":"Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features. Medical image computing and computer-assisted intervention: MICCAI","author":"Guo","year":"2014"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib54","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1155\/2011\/572187","article-title":"Efficient probabilistic and geometric anatomical mapping using particle mesh approximation on GPUs","volume":"2011","author":"Ha","year":"2011","journal-title":"International Journal of Biomedical Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib55","doi-asserted-by":"crossref","first-page":"997","DOI":"10.1016\/j.neuroimage.2004.06.043","article-title":"CRUISE: cortical reconstruction using implicit surface evolution","volume":"23","author":"Han","year":"2004","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib56","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1109\/42.993130","article-title":"Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm","volume":"21","author":"Han","year":"2002","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib57","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1109\/TPAMI.2003.1201824","article-title":"A\u00a0topology preserving level set method for geometric deformable models","volume":"25","author":"Han","year":"2003","journal-title":"Ieee Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib58","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1007\/978-3-319-46720-7_26","article-title":"Learning-based topological correction for infant cortical surfaces","volume":"2016","author":"Hao","year":"2016","journal-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib59","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1038\/nature21369","article-title":"Early brain development in infants at high risk for autism spectrum disorder","volume":"542","author":"Hazlett","year":"2017","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib60","doi-asserted-by":"crossref","first-page":"1366","DOI":"10.1001\/archpsyc.62.12.1366","article-title":"Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years","volume":"62","author":"Hazlett","year":"2005","journal-title":"Archives of general psychiatry"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib61","doi-asserted-by":"crossref","first-page":"467","DOI":"10.1001\/archgenpsychiatry.2011.39","article-title":"Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years","volume":"68","author":"Hazlett","year":"2011","journal-title":"Archives of general psychiatry"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib62","doi-asserted-by":"crossref","first-page":"2268","DOI":"10.1523\/JNEUROSCI.4682-09.2010","article-title":"A\u00a0surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants","volume":"30","author":"Hill","year":"2010","journal-title":"Journal of Neuroscience"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib1a","article-title":"The UNC\/UMN Baby Connectome Project (BCP): an overview of the study design and protocol development","author":"Howell","year":"2018","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib63","first-page":"794","article-title":"A\u00a0dedicated neonatal brain imaging system","author":"Hughes","year":"2016","journal-title":"Magnetic Resonance in Medicine"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib64","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.siny.2006.07.006","article-title":"Diffusion tensor imaging of brain development","author":"H\u00fcppi","year":"2006","journal-title":"Seminars in Fetal and Neonatal Medicine"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib65","article-title":"Environmental influences on infant cortical thickness and surface area","author":"Jha","year":"2018","journal-title":"Cerebral Cortex"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib66","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.neuroimage.2016.06.002","article-title":"Multi-compartment microscopic diffusion imaging","volume":"139","author":"Kaden","year":"2016","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib67","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pmed.0030265","article-title":"Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth","volume":"3","author":"Kapellou","year":"2006","journal-title":"PLoS medicine"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib68","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/j.neuroimage.2007.05.004","article-title":"A\u00a0neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results","volume":"37","author":"Kazemi","year":"2007","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib69","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.neuroimage.2016.05.034","article-title":"NEOCIVET: towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns","volume":"138","author":"Kim","year":"2016","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib70","series-title":"Graph-constrained Sparse Construction of Longitudinal Diffusion-weighted Infant Atlases. Medical Image Computing and Computer-assisted Intervention \u2013 MICCAI 2017","first-page":"49","author":"Kim","year":"2017"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib71","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.neuroimage.2005.03.036","article-title":"Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification","volume":"27","author":"Kim","year":"2005","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib72","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.neuroimage.2016.04.053","article-title":"Development of cortical shape in the human brain from 6 to 24months of age via a novel measure of shape complexity","volume":"135","author":"Kim","year":"2016","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib73","doi-asserted-by":"crossref","first-page":"786","DOI":"10.1016\/j.neuroimage.2008.12.037","article-title":"Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration","volume":"46","author":"Klein","year":"2009","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib74","doi-asserted-by":"crossref","first-page":"12176","DOI":"10.1523\/JNEUROSCI.3479-08.2008","article-title":"A\u00a0structural MRI study of human brain development from birth to 2 years","volume":"28","author":"Knickmeyer","year":"2008","journal-title":"The Journal of Neuroscience"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib75","doi-asserted-by":"crossref","first-page":"2750","DOI":"10.1016\/j.neuroimage.2010.10.019","article-title":"A\u00a0dynamic 4D probabilistic atlas of the developing brain","volume":"54","author":"Kuklisova-Murgasova","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib76","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib77","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0027128","article-title":"Atlas-free surface reconstruction of the cortical grey-white interface in infants","volume":"6","author":"Leroy","year":"2011","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib78","doi-asserted-by":"crossref","first-page":"9150","DOI":"10.1523\/JNEUROSCI.4107-14.2015","article-title":"Spatial patterns, longitudinal development, and hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age","volume":"35","author":"Li","year":"2015","journal-title":"Journal of Neuroscience"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib79","doi-asserted-by":"crossref","first-page":"5183","DOI":"10.1002\/hbm.23003","article-title":"Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness","volume":"36","author":"Li","year":"2015","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib80","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1016\/j.neuroimage.2013.12.038","article-title":"Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces","volume":"90","author":"Li","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib81","doi-asserted-by":"crossref","first-page":"2724","DOI":"10.1093\/cercor\/bhs265","article-title":"Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age","volume":"23","author":"Li","year":"2013","journal-title":"Cerebral cortex"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib82","doi-asserted-by":"crossref","first-page":"3805","DOI":"10.1016\/j.neuroimage.2011.11.012","article-title":"Consistent reconstruction of cortical surfaces from longitudinal brain MR images","volume":"59","author":"Li","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib83","series-title":"Parcellation of Infant Surface Atlas Using Developmental Trajectories of Multidimensional Cortical Attributes. Medical Image Computing and Computer-assisted Intervention \u2013 MICCAI 2015","first-page":"543","author":"Li","year":"2015"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib84","series-title":"Developmental Patterns Based Individualized Parcellation of Infant Cortical Surface. Medical Image Computing and Computer-assisted Intervention \u2013 MICCAI 2017","first-page":"66","author":"Li","year":"2017"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib85","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.media.2015.04.005","article-title":"Construction of 4D high-definition cortical surface atlases of infants: methods and applications","volume":"25","author":"Li","year":"2015","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib86","doi-asserted-by":"crossref","first-page":"1274","DOI":"10.1016\/j.media.2014.06.007","article-title":"Simultaneous and consistent labeling of longitudinal dynamic developing cortical surfaces in infants","volume":"18","author":"Li","year":"2014","journal-title":"Medical image analysis"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib87","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1007\/s00429-014-0917-3","article-title":"Cortical thickness and surface area in neonates at high risk for schizophrenia","volume":"221","author":"Li","year":"2016","journal-title":"Brain Structure and Function"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib88","doi-asserted-by":"crossref","first-page":"4228","DOI":"10.1523\/JNEUROSCI.3976-13.2014","article-title":"Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age","volume":"34","author":"Li","year":"2014","journal-title":"Journal of Neuroscience"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib89","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1145\/37402.37422","article-title":"Marching cubes: a high resolution 3D surface construction algorithm","volume":"21","author":"Lorensen","year":"1987","journal-title":"SIGGRAPH Comput. Graph"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib90","doi-asserted-by":"crossref","first-page":"2204","DOI":"10.1093\/cercor\/bhu027","article-title":"Dynamic development of regional cortical thickness and surface area in early childhood","volume":"25","author":"Lyall","year":"2014","journal-title":"Cerebral cortex"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib91","doi-asserted-by":"crossref","first-page":"1535","DOI":"10.1016\/j.neuroimage.2006.10.041","article-title":"An unbiased iterative group registration template for cortical surface analysis","volume":"34","author":"Lyttelton","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib92","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1006\/nimg.1999.0534","article-title":"Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI","volume":"12","author":"MacDonald","year":"2000","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib93","doi-asserted-by":"crossref","first-page":"802","DOI":"10.1007\/s10278-012-9460-z","article-title":"Skull stripping of neonatal brain MRI: using prior shape information with graph cuts","volume":"25","author":"Mahapatra","year":"2012","journal-title":"Journal of Digital Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib94","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.neuroimage.2015.10.047","article-title":"Regional growth and atlasing of the developing human brain","volume":"125","author":"Makropoulos","year":"2016","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib95","article-title":"A\u00a0review on automatic fetal and neonatal brain MRI segmentation","author":"Makropoulos","year":"2017","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib96","doi-asserted-by":"crossref","first-page":"1818","DOI":"10.1109\/TMI.2014.2322280","article-title":"Automatic whole brain MRI segmentation of the developing neonatal brain","volume":"33","author":"Makropoulos","year":"2014","journal-title":"IEEE Transactions on Medical Imaging"},{"year":"2017","series-title":"The Developing Human Connectome Project: a Minimal Processing Pipeline for Neonatal Cortical Surface Reconstruction","author":"Makropoulos","key":"10.1016\/j.neuroimage.2018.03.042_bib97"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib98","doi-asserted-by":"crossref","first-page":"1124","DOI":"10.3174\/ajnr.A3128","article-title":"Motion-compensation techniques in neonatal and fetal MR imaging","volume":"34","author":"Malamateniou","year":"2013","journal-title":"AJNR Am J Neuroradiol"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib99","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1007\/BF01250286","article-title":"From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations","volume":"5","author":"Mangin","year":"1995","journal-title":"Journal of Mathematical Imaging and Vision"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib100","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.neuroimage.2013.11.048","article-title":"Preterm birth affects the developmental synergy between cortical folding and cortical connectivity observed on multimodal MRI","volume":"89","author":"Melbourne","year":"2014","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib101","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.neuroimage.2014.06.004","article-title":"Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants","volume":"100","author":"Meng","year":"2014","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib102","doi-asserted-by":"crossref","first-page":"2865","DOI":"10.1002\/hbm.23555","article-title":"Can we predict subject-specific dynamic cortical thickness maps during infancy from birth?","volume":"38","author":"Meng","year":"2017","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib103","series-title":"Discovering Cortical Folding Patterns in Neonatal Cortical Surfaces Using Large-scale Dataset. International Conference on Medical Image Computing and Computer-assisted Intervention","first-page":"10","author":"Meng","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib104","doi-asserted-by":"crossref","first-page":"1252","DOI":"10.1109\/TMI.2016.2548501","article-title":"Automatic segmentation of MR brain images with a convolutional neural network","volume":"35","author":"Moeskops","year":"2016","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib105","doi-asserted-by":"crossref","DOI":"10.1109\/TCYB.2018.2797905","article-title":"3-D fully convolutional networks for multimodal isointense infant brain image segmentation","author":"Nie","year":"2018","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib106","series-title":"Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on. IEEE","first-page":"1342","article-title":"Fully convolutional networks for multi-modality isointense infant brain image segmentation","author":"Nie","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib107","doi-asserted-by":"crossref","first-page":"467","DOI":"10.1016\/j.jtbi.2010.02.002","article-title":"A\u00a0computational model of cerebral cortex folding","volume":"264","author":"Nie","year":"2010","journal-title":"Journal of theoretical biology"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib108","doi-asserted-by":"crossref","first-page":"2272","DOI":"10.1093\/cercor\/bhr293","article-title":"A\u00a0computational growth model for measuring dynamic cortical development in the first year of life","volume":"22","author":"Nie","year":"2011","journal-title":"Cerebral cortex"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib109","doi-asserted-by":"crossref","first-page":"3726","DOI":"10.1002\/hbm.22432","article-title":"Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life","volume":"35","author":"Nie","year":"2014","journal-title":"Human brain mapping"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib110","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1016\/j.ijdevneu.2013.06.004","article-title":"Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging","volume":"31","author":"Oishi","year":"2013","journal-title":"International Journal of Developmental Neuroscience"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib111","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.neuroimage.2011.01.051","article-title":"Multi-contrast human neonatal brain atlas: application to normal neonate development analysis","volume":"56","author":"Oishi","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib112","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/S0361-9230(00)00434-2","article-title":"Maturation of white matter in the human brain: a review of magnetic resonance studies","volume":"54","author":"Paus","year":"2001","journal-title":"Brain Research Bulletin"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib113","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1002\/ima.20138","article-title":"A\u00a0methodology for analyzing curvature in the developing brain from preterm to adult","volume":"18","author":"Pienaar","year":"2008","journal-title":"International journal of imaging systems and technology"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib114","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1016\/j.media.2005.05.007","article-title":"Automatic segmentation of MR images of the developing newborn brain","volume":"9","author":"Prastawa","year":"2005","journal-title":"Med Image Anal"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib115","series-title":"Information Processing in Medical Imaging: Proceedings of the Conference. NIH Public Access","first-page":"576","article-title":"Prediction of longitudinal development of infant cortical surface shape using a 4D current-based learning framework","author":"Rekik","year":"2015"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib116","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2015.10.007","article-title":"Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing","volume":"28","author":"Rekik","year":"2016","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib117","series-title":"International Workshop on Patch-based Techniques in Medical Imaging","first-page":"197","article-title":"Prediction of infant MRI appearance and anatomical structure evolution using sparse patch-based metamorphosis learning framework","author":"Rekik","year":"2015"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib118","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1016\/j.neuroimage.2017.03.012","article-title":"Joint prediction of longitudinal development of cortical surfaces and white matter fibers from neonatal MRI","volume":"152","author":"Rekik","year":"2017","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib119","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.media.2004.06.009","article-title":"Tuning and comparing spatial normalization methods","volume":"8","author":"Robbins","year":"2004","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib120","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1016\/j.neuroimage.2014.05.069","article-title":"MSM: a new flexible framework for multimodal surface matching","volume":"100","author":"Robinson","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib121","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1016\/j.neuroimage.2008.01.008","article-title":"A\u00a0framework for in vivo quantification of regional brain folding in premature neonates","volume":"41","author":"Rodriguez-Carranza","year":"2008","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib122","doi-asserted-by":"crossref","first-page":"3175","DOI":"10.1002\/hbm.23583","article-title":"Spatio-angular consistent construction of neonatal diffusion MRI atlases","volume":"38","author":"Saghafi","year":"2017","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib123","doi-asserted-by":"crossref","first-page":"518","DOI":"10.1109\/TMI.2006.887364","article-title":"Geometrically accurate topology-correction of cortical surfaces using nonseparating loops","volume":"26","author":"Segonne","year":"2007","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib124","doi-asserted-by":"crossref","first-page":"2255","DOI":"10.1016\/j.neuroimage.2011.09.062","article-title":"Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression","volume":"59","author":"Serag","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib125","doi-asserted-by":"crossref","DOI":"10.1038\/srep23470","article-title":"Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods","volume":"6","author":"Serag","year":"2016","journal-title":"Scientific Reports"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib126","first-page":"1","article-title":"A\u00a0multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates","volume":"2012","author":"Serag","year":"2012","journal-title":"Annals of the BMVA"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib127","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1109\/42.963819","article-title":"Automated graph-based analysis and correction of cortical volume topology","volume":"20","author":"Shattuck","year":"2001","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib128","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1016\/j.neuroimage.2009.07.066","article-title":"Neonatal brain image segmentation in longitudinal MRI studies","volume":"49","author":"Shi","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib129","first-page":"1","article-title":"Functional brain parcellations of the infant brain and the associated developmental trends","author":"Shi","year":"2017","journal-title":"Cereb Cortex"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib130","doi-asserted-by":"crossref","first-page":"382","DOI":"10.1002\/hbm.21023","article-title":"CENTS: cortical enhanced neonatal tissue segmentation","volume":"32","author":"Shi","year":"2011","journal-title":"Hum Brain Mapp"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib131","doi-asserted-by":"crossref","first-page":"1975","DOI":"10.1016\/j.neuroimage.2012.05.042","article-title":"LABEL: pediatric brain extraction using learning-based meta-algorithm","volume":"62","author":"Shi","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib132","doi-asserted-by":"crossref","first-page":"4663","DOI":"10.1002\/hbm.22502","article-title":"Neonatal atlas construction using sparse representation","author":"Shi","year":"2014","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib133","doi-asserted-by":"crossref","first-page":"684","DOI":"10.1016\/j.neuroimage.2010.02.025","article-title":"Construction of multi-region-multi-reference atlases for neonatal brain MRI segmentation","volume":"51","author":"Shi","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib134","doi-asserted-by":"crossref","first-page":"1622","DOI":"10.1016\/j.neuroimage.2012.05.026","article-title":"Altered structural connectivity in neonates at genetic risk for schizophrenia: a combined study using morphological and white matter networks","volume":"62","author":"Shi","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib135","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0018746","article-title":"Infant brain atlases from neonates to 1- and 2-year-olds","volume":"6","author":"Shi","year":"2011","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib136","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1109\/42.668698","article-title":"A\u00a0nonparametric method for automatic correction of intensity nonuniformity in MRI data","volume":"17","author":"Sled","year":"1998","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib137","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1002\/hbm.10062","article-title":"Fast robust automated brain extraction","volume":"17","author":"Smith","year":"2002","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib138","series-title":"Clinical Neonatal Brain MRI Segmentation Using Adaptive Nonparametric Data Models and Intensity-based Markov Priors. Medical Image Computing and Computer-assisted Intervention \u2013 MICCAI 2007","first-page":"883","author":"Song","year":"2007"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib139","doi-asserted-by":"crossref","first-page":"1153","DOI":"10.1109\/TMI.2013.2265603","article-title":"Deformable medical image registration: a survey","volume":"32","author":"Sotiras","year":"2013","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib140","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1146\/annurev-bioeng-071910-124654","article-title":"Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping","volume":"13","author":"Studholme","year":"2011","journal-title":"Annual review of biomedical engineering"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib141","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1109\/TMI.2010.2046908","article-title":"N4ITK: improved N3 bias correction","volume":"29","author":"Tustison","year":"2010","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib142","doi-asserted-by":"crossref","first-page":"S97","DOI":"10.1016\/j.neuroimage.2004.07.024","article-title":"Surface-based approaches to spatial localization and registration in primate cerebral cortex","volume":"23","author":"Van Essen","year":"2004","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib143","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1136\/jamia.2001.0080443","article-title":"An integrated software suite for surface-based analyses of cerebral cortex","volume":"8","author":"Van Essen","year":"2001","journal-title":"Journal of the American Medical Informatics Association"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib144","doi-asserted-by":"crossref","first-page":"S61","DOI":"10.1016\/j.neuroimage.2008.10.040","article-title":"Diffeomorphic demons: efficient non-parametric image registration","volume":"45","author":"Vercauteren","year":"2009","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib145","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1109\/TMI.2006.891486","article-title":"A\u00a0review of methods for correction of intensity inhomogeneity in MRI","volume":"26","author":"Vovk","year":"2007","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib146","series-title":"IEEE Symposium on Biomedical Imaging","article-title":"Construction of spatiotemparal infant cortical surface atlas of rhesus macque","author":"Wang","year":"2018"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib147","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.neuroimage.2014.12.042","article-title":"LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images","volume":"108","author":"Wang","year":"2015","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib148","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.neuroimage.2013.11.040","article-title":"Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation","volume":"89","author":"Wang","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib149","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.neuroimage.2013.08.008","article-title":"Segmentation of neonatal brain MR images using patch-driven level sets","volume":"84","author":"Wang","year":"2014","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib150","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1016\/j.neuroimage.2011.06.064","article-title":"Automatic segmentation of neonatal images using convex optimization and coupled level sets","volume":"58","author":"Wang","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib151","article-title":"4D multi-modality tissue segmentation of serial infant images","volume":"7","author":"Wang","year":"2012","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib152","series-title":"International Workshop on Machine Learning in Medical Imaging, MLMI (MICCAI 2014)","first-page":"1","article-title":"Sparsity-learning-based longitudinal MR image registration for early brain development","author":"Wang","year":"2014"},{"year":"2012","series-title":"An Atlas-based Method for Neonatal MR Brain Tissue Segmentation. MICCAI Grand Challenge: Neonatal Brain Segmentation","author":"Wang","key":"10.1016\/j.neuroimage.2018.03.042_bib153"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib154","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/S1361-8415(00)00003-7","article-title":"Adaptive, template moderated, spatially varying statistical classification","volume":"4","author":"Warfield","year":"2000","journal-title":"Med Image Anal"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib155","doi-asserted-by":"crossref","DOI":"10.1002\/mp.12578","article-title":"Learning-based deformable registration for infant MRI by integrating random forest with auto-context model","author":"Wei","year":"2017","journal-title":"Medical Physics"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib156","series-title":"IEEE 13th International Symposium on Biomedical Imaging (ISBI 2006)","first-page":"766","article-title":"Segmentation of newborn brain MRI","author":"Weisenfeld","year":"2006"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib157","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1016\/j.neuroimage.2009.04.068","article-title":"Automatic segmentation of newborn brain MRI","volume":"47","author":"Weisenfeld","year":"2009","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib158","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1002\/hbm.21454","article-title":"Probing tissue microstructure with restriction spectrum imaging: histological and theoretical validation","volume":"34","author":"White","year":"2013","journal-title":"Hum Brain Mapp"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib159","doi-asserted-by":"crossref","first-page":"1968","DOI":"10.1016\/j.neuroimage.2011.03.050","article-title":"SharpMean: groupwise registration guided by sharp mean image and tree-based registration","volume":"56","author":"Wu","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib160","doi-asserted-by":"crossref","first-page":"4174","DOI":"10.1118\/1.4922393","article-title":"Hierarchical and symmetric infant image registration by robust longitudinal-example-guided correspondence detection","volume":"42","author":"Wu","year":"2015","journal-title":"Medical Physics"},{"year":"2017","series-title":"4D Infant Cortical Surface Atlas Construction Using Spherical Patch-based Sparse Representation. Medical Image Computing and Computer-assisted Intervention\u2013MICCAI 2017","author":"Wu","key":"10.1016\/j.neuroimage.2018.03.042_bib161"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib162","series-title":"IEEE Symposium on Biomedical Imaging","article-title":"Construction of spatiotemparal neonatal cortical surface atlases using a large-scale dataset","author":"Wu","year":"2018"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib163","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1016\/j.neuroimage.2007.07.030","article-title":"Automatic segmentation and reconstruction of the cortex from neonatal MRI","volume":"38","author":"Xue","year":"2007","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib164","series-title":"Medical Image Computing and Computer-assisted Intervention\u2013MICCAI 2007","first-page":"127","article-title":"Longitudinal cortical registration for developing neonates","author":"Xue","year":"2007"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib165","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1016\/j.neuroimage.2005.09.054","article-title":"CLASSIC: consistent longitudinal alignment and segmentation for serial image computing","volume":"30","author":"Xue","year":"2006","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib166","doi-asserted-by":"crossref","first-page":"1829","DOI":"10.1109\/TMI.2011.2154385","article-title":"PopTract: population-based tractography","volume":"30","author":"Yap","year":"2011","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib167","doi-asserted-by":"crossref","first-page":"650","DOI":"10.1109\/TMI.2009.2030797","article-title":"Spherical demons: fast diffeomorphic landmark-free surface registration","volume":"29","author":"Yeo","year":"2010","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib168","doi-asserted-by":"crossref","first-page":"1038","DOI":"10.1016\/j.neuroimage.2006.01.039","article-title":"Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system","volume":"31","author":"Zaitsev","year":"2006","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib169","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1002\/jmri.24850","article-title":"Motion artifacts in MRI: a complex problem with many partial solutions","volume":"42","author":"Zaitsev","year":"2015","journal-title":"J\u00a0Magn Reson Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib170","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1016\/j.neuroimage.2012.03.072","article-title":"NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain","volume":"61","author":"Zhang","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib171","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.neuroimage.2014.12.061","article-title":"Deep convolutional neural networks for multi-modality isointense infant brain image segmentation","volume":"108","author":"Zhang","year":"2015","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib172","doi-asserted-by":"crossref","first-page":"2568","DOI":"10.1109\/TMI.2016.2587628","article-title":"Consistent spatial-temporal longitudinal atlas construction for developing infant brains","volume":"35","author":"Zhang","year":"2016","journal-title":"IEEE Trans Med Imaging"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib173","doi-asserted-by":"crossref","first-page":"2133","DOI":"10.1002\/hbm.23160","article-title":"Detail-preserving construction of neonatal brain atlases in space-frequency domain","volume":"37","author":"Zhang","year":"2016","journal-title":"Hum Brain Mapp"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib174","doi-asserted-by":"crossref","DOI":"10.1038\/nrn2776","article-title":"Centenary of Brodmann's map\u2013conception and fate","volume":"11","author":"Zilles","year":"2010","journal-title":"Nature Reviews Neuroscience"},{"key":"10.1016\/j.neuroimage.2018.03.042_bib175","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1007\/BF00304699","article-title":"The human pattern of gyrification in the cerebral cortex","volume":"179","author":"Zilles","year":"1988","journal-title":"Anatomy and embryology"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918302556?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918302556?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,9]],"date-time":"2019-08-09T03:39:43Z","timestamp":1565321983000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811918302556"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1]]},"references-count":176,"alternative-id":["S1053811918302556"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.03.042","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2019,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Computational neuroanatomy of baby brains: A review","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.03.042","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}