{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T15:27:51Z","timestamp":1726500471248},"reference-count":56,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,7,1]],"date-time":"2018-07-01T00:00:00Z","timestamp":1530403200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,3,12]],"date-time":"2018-03-12T00:00:00Z","timestamp":1520812800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000287","name":"Royal Academy of Engineering","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100000287","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Wellcome Trust","award":["202788\/Z\/16\/Z"]},{"name":"Wellcome Trust","award":["203139\/Z\/16\/Z"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2018,7]]},"DOI":"10.1016\/j.neuroimage.2018.02.062","type":"journal-article","created":{"date-parts":[[2018,3,20]],"date-time":"2018-03-20T12:49:58Z","timestamp":1521550198000},"page":"97-110","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Recovering task fMRI signals from highly under-sampled data with low-rank and temporal subspace constraints"],"prefix":"10.1016","volume":"174","author":[{"given":"Mark","family":"Chiew","sequence":"first","affiliation":[]},{"given":"Nadine N.","family":"Graedel","sequence":"additional","affiliation":[]},{"given":"Karla L.","family":"Miller","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neuroimage.2018.02.062_bib1","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1007\/s40708-016-0059-x","article-title":"Optshrink LR + S: accelerated fMRI reconstruction using non-convex optimal singular value shrinkage","volume":"4","author":"Aggarwal","year":"2017","journal-title":"Brain Informatics"},{"year":"2009","series-title":"A\u00a0Fast Iterative Shrinkage-thresholding Algorithm for Linear Inverse Problems","author":"Beck","key":"10.1016\/j.neuroimage.2018.02.062_bib2"},{"issue":"2","key":"10.1016\/j.neuroimage.2018.02.062_bib3","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1109\/TMI.2003.822821","article-title":"Probabilistic independent component analysis for functional magnetic resonance imaging","volume":"23","author":"Beckmann","year":"2004","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"7","key":"10.1016\/j.neuroimage.2018.02.062_bib4","doi-asserted-by":"crossref","first-page":"4660","DOI":"10.1109\/TIT.2011.2146550","article-title":"Sampling and reconstructing signals from a union of linear subspaces","volume":"57","author":"Blumensath","year":"2011","journal-title":"IEEE Trans. Inf. Theor."},{"issue":"5-6","key":"10.1016\/j.neuroimage.2018.02.062_bib5","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1002\/(SICI)1097-0193(1998)6:5\/6<373::AID-HBM8>3.0.CO;2-P","article-title":"Event-related fMRI and the hemodynamic response","volume":"6","author":"Buckner","year":"1998","journal-title":"Human Brain Mapping"},{"issue":"Suppl. 1","key":"10.1016\/j.neuroimage.2018.02.062_bib6","doi-asserted-by":"crossref","first-page":"S220","DOI":"10.1016\/j.neuroimage.2004.07.013","article-title":"Modeling the hemodynamic response to brain activation","volume":"23","author":"Buxton","year":"2004","journal-title":"NeuroImage"},{"issue":"2","key":"10.1016\/j.neuroimage.2018.02.062_bib7","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1002\/mrm.23008","article-title":"The influence of radial undersampling schemes on compressed sensing reconstruction in breast MRI","volume":"67","author":"Chan","year":"2011","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"10.1016\/j.neuroimage.2018.02.062_bib8","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.neuroimage.2008.06.030","article-title":"Mapping and correction of vascular hemodynamic latency in the BOLD signal","volume":"43","author":"Chang","year":"2008","journal-title":"NeuroImage"},{"issue":"4","key":"10.1016\/j.neuroimage.2018.02.062_bib9","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.1137\/080738970","article-title":"A\u00a0singular value thresholding algorithm for matrix completion","volume":"20","author":"Cai","year":"2010","journal-title":"Siam Journal on Optimization"},{"issue":"2","key":"10.1016\/j.neuroimage.2018.02.062_bib10","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1016\/j.neuroimage.2004.12.012","article-title":"Semi-blind ICA of fMRI: a method for utilizing hypothesis-derived time courses in a spatial ICA analysis","volume":"25","author":"Calhoun","year":"2005","journal-title":"NeuroImage"},{"issue":"19","key":"10.1016\/j.neuroimage.2018.02.062_bib11","doi-asserted-by":"crossref","first-page":"4643","DOI":"10.1109\/TSP.2013.2270464","article-title":"Unbiased risk estimates for singular value thresholding and spectral estimators","volume":"61","author":"Candes","year":"2013","journal-title":"Ieee Transactions on Signal Processing"},{"issue":"5","key":"10.1016\/j.neuroimage.2018.02.062_bib12","doi-asserted-by":"crossref","first-page":"2053","DOI":"10.1109\/TIT.2010.2044061","article-title":"The power of convex relaxation: near-optimal matrix completion","volume":"56","author":"Candes","year":"2010","journal-title":"Information Theory, IEEE Transactions on"},{"issue":"3","key":"10.1016\/j.neuroimage.2018.02.062_bib13","doi-asserted-by":"crossref","DOI":"10.1145\/1970392.1970395","article-title":"Robust principal component analysis?","volume":"58","author":"Candes","year":"2011","journal-title":"Journal of the Acm"},{"issue":"2","key":"10.1016\/j.neuroimage.2018.02.062_bib14","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1002\/mrm.25395","article-title":"k-t FASTER: acceleration of functional MRI data acquisition using low rank constraints","volume":"74","author":"Chiew","year":"2015","journal-title":"Magnetic Resonance in Medicine"},{"issue":"6","key":"10.1016\/j.neuroimage.2018.02.062_bib15","doi-asserted-by":"crossref","DOI":"10.1002\/mrm.26079","article-title":"Accelerating functional MRI using fixed-rank approximations and radial-cartesian sampling","volume":"76","author":"Chiew","year":"2016","journal-title":"Magnetic Resonance in Medicine"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib16","series-title":"Presented at the Proceedings of the 24th Annual Meeting of ISMRM","article-title":"Promoting incoherence of radial x-f point spread functions using randomly perturbed golden angles","author":"Chiew","year":"2016"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib17","series-title":"Presented at the Proceedings of the 25th Annual Meeting of ISMRM","article-title":"Accelerated rank-constrained FMRI data reconstruction informed by external temporal measures","author":"Chiew","year":"2017"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib18","series-title":"Presented at the Proceedings of the OHBM Annual Meeting","article-title":"EEG-Informed reconstruction of accelerated FMRI data acquisition","author":"Chiew","year":"2017"},{"issue":"2-3","key":"10.1016\/j.neuroimage.2018.02.062_bib19","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1002\/(SICI)1097-0193(1999)8:2\/3<109::AID-HBM7>3.0.CO;2-W","article-title":"Optimal experimental design for event-related fMRI","volume":"8","author":"Dale","year":"1999","journal-title":"Human Brain Mapping"},{"issue":"12","key":"10.1016\/j.neuroimage.2018.02.062_bib20","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0015710","article-title":"Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging","volume":"5","author":"Feinberg","year":"2010","journal-title":"PloS One"},{"issue":"2","key":"10.1016\/j.neuroimage.2018.02.062_bib21","doi-asserted-by":"crossref","first-page":"560","DOI":"10.1109\/TSP.2002.807005","article-title":"Nonuniform fast Fourier transforms using Min-max interpolation","volume":"51","author":"Fessler","year":"2003","journal-title":"Ieee Transactions on Signal Processing"},{"issue":"4","key":"10.1016\/j.neuroimage.2018.02.062_bib22","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1002\/hbm.460020402","article-title":"Statistical parametric maps in functional imaging: a general linear approach","volume":"2","author":"Friston","year":"1995","journal-title":"Human Brain Mapping"},{"issue":"3","key":"10.1016\/j.neuroimage.2018.02.062_bib23","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1016\/j.neuron.2012.09.019","article-title":"High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses","volume":"76","author":"Goense","year":"2012","journal-title":"Neuron"},{"issue":"2","key":"10.1016\/j.neuroimage.2018.02.062_bib24","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1007\/s10208-011-9084-6","article-title":"Convergence of fixed-point continuation algorithms for matrix rank minimization","volume":"11","author":"Goldfarb","year":"2011","journal-title":"Foundations of Computational Mathematics"},{"issue":"2","key":"10.1016\/j.neuroimage.2018.02.062_bib25","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1002\/mrm.26390","article-title":"Motion correction for functional MRI with three-dimensional hybrid radial-Cartesian EPI","volume":"78","author":"Graedel","year":"2017","journal-title":"Magnetic Resonance in Medicine"},{"issue":"6","key":"10.1016\/j.neuroimage.2018.02.062_bib26","doi-asserted-by":"crossref","first-page":"1202","DOI":"10.1002\/mrm.10171","article-title":"Generalized autocalibrating partially parallel acquisitions (GRAPPA)","volume":"47","author":"Griswold","year":"2002","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"10.1016\/j.neuroimage.2018.02.062_bib27","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1006\/nimg.2001.0940","article-title":"Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations","volume":"15","author":"Henson","year":"2002","journal-title":"NeuroImage"},{"issue":"6","key":"10.1016\/j.neuroimage.2018.02.062_bib28","doi-asserted-by":"crossref","first-page":"1634","DOI":"10.1002\/mrm.24621","article-title":"Compressed sensing reconstruction improves sensitivity of variable density spiral fMRI","volume":"70","author":"Holland","year":"2013","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2018.02.062_bib29","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1186\/1475-925X-11-25","article-title":"Optimal compressed sensing reconstructions of fMRI using 2D deterministic and stochastic sampling geometries","volume":"11","author":"Jeromin","year":"2012","journal-title":"Biomedical Engineering Online"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib30","first-page":"702","article-title":"Performance evaluation of accelerated functional MRI acquisition using compressed sensing","volume":"2009","author":"Jung","year":"2009"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib31","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.neuroimage.2014.05.024","article-title":"Matched-filter acquisition for BOLD fMRI","volume":"100","author":"Kasper","year":"2014","journal-title":"NeuroImage"},{"issue":"3","key":"10.1016\/j.neuroimage.2018.02.062_bib32","doi-asserted-by":"crossref","first-page":"1276","DOI":"10.1016\/j.neuroimage.2011.02.042","article-title":"Multi-echo fMRI of the cortical laminae in humans at 7 T","volume":"56","author":"Koopmans","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib33","series-title":"Presented at the Proceedings of the 21st Annual Meeting of ISMRM","article-title":"Accelerated fMRI using low-rank model and sparsity constraints","author":"Lam","year":"2013"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib34","first-page":"988","article-title":"Spatiotemporal imaging with partially separable functions","volume":"2007","author":"Liang","year":"2007","journal-title":"IEEE International Symposium on Biomedical Imaging (ISBI)"},{"issue":"7","key":"10.1016\/j.neuroimage.2018.02.062_bib35","doi-asserted-by":"crossref","first-page":"1076","DOI":"10.1002\/hbm.20919","article-title":"Semiblind spatial ICA of fMRI using spatial constraints","volume":"31","author":"Lin","year":"2010","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib36","series-title":"Proceedings of the 13th Annual Meeting of ISMRM, Seattle, 2006","first-page":"2420","article-title":"k-t SPARSE: high frame rate dynamic MRI exploiting spatio-temporal sparsity","author":"Lustig","year":"2006"},{"issue":"18","key":"10.1016\/j.neuroimage.2018.02.062_bib37","doi-asserted-by":"crossref","first-page":"10902","DOI":"10.1073\/pnas.95.18.10902","article-title":"Mental chronometry using latency-resolved functional MRI","volume":"95","author":"Menon","year":"1998","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"10.1016\/j.neuroimage.2018.02.062_bib39","first-page":"543","article-title":"A\u00a0method for solving the convex programming problem with convergence rate O(1\/k2)","volume":"269","author":"Nesterov","year":"1983","journal-title":"Dokl. Akad. Nauk SSSR"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib40","series-title":"Presented at the Proceedings of the 22nd Annual Meeting of ISMRM","article-title":"Field-corrected imaging for sparsely-sampled fMRI by exploiting low-rank spatiotemporal structure","author":"Nguyen","year":"2014"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib42","first-page":"2015","article-title":"Low-rank plus sparse (L+S) decomposition for separation of subsampled physiological noise in fMRI","volume":"1690","author":"Otazo","year":"2015"},{"issue":"3","key":"10.1016\/j.neuroimage.2018.02.062_bib43","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.1002\/mrm.25240","article-title":"Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components","volume":"73","author":"Otazo","year":"2015","journal-title":"Magnetic Resonance in Medicine"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib44","doi-asserted-by":"crossref","first-page":"660","DOI":"10.1016\/j.neuroimage.2017.06.004","article-title":"Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction","volume":"157","author":"Petrov","year":"2017","journal-title":"NeuroImage"},{"issue":"1","key":"10.1016\/j.neuroimage.2018.02.062_bib45","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1002\/(SICI)1522-2594(199901)41:1<179::AID-MRM25>3.0.CO;2-V","article-title":"Sampling density compensation in MRI: rationale and an iterative numerical solution","volume":"41","author":"Pipe","year":"1999","journal-title":"Magnetic Resonance in Medicine"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib46","series-title":"Presented at the Proceedings to ESMRMB Congress, Toulouse","first-page":"287","article-title":"CAIPIRINHA-accelerated 3D EPI for high temporal and\/or spatial resolution EPI acquisitions","author":"Poser","year":"2013"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib47","series-title":"Presented at the IFMBE Proceedings, Berlin, Heidelberg","first-page":"555","article-title":"Constrained spatiotemporal ICA and its application for fMRI data analysis","volume":"23","author":"Rasheed","year":"2009"},{"issue":"2","key":"10.1016\/j.neuroimage.2018.02.062_bib48","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1002\/mrm.1910160203","article-title":"The NMR phased array","volume":"16","author":"Roemer","year":"1990","journal-title":"Magnetic Resonance in Medicine"},{"issue":"3","key":"10.1016\/j.neuroimage.2018.02.062_bib49","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1002\/mrm.1910400319","article-title":"Reduced circular field-of-view imaging","volume":"40","author":"Scheffler","year":"1998","journal-title":"Magnetic Resonance in Medicine"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib50","first-page":"897","article-title":"Under-sampled functional MRI using low-rank plus sparse matrix decomposition","volume":"2015","author":"Singh","year":"2015"},{"issue":"8","key":"10.1016\/j.neuroimage.2018.02.062_bib51","doi-asserted-by":"crossref","first-page":"3131","DOI":"10.1073\/pnas.1121329109","article-title":"Temporally-independent functional modes of spontaneous brain activity","volume":"109","author":"Smith","year":"2012","journal-title":"Proceedings of the National Academy of Sciences of the United States of America"},{"issue":"8","key":"10.1016\/j.neuroimage.2018.02.062_bib52","doi-asserted-by":"crossref","first-page":"1110","DOI":"10.1016\/j.mri.2009.05.036","article-title":"Optimizing ICA in fMRI using information on spatial regularities of the sources","volume":"27","author":"Valente","year":"2009","journal-title":"Magnetic Resonance Imaging"},{"issue":"4","key":"10.1016\/j.neuroimage.2018.02.062_bib53","article-title":"Temporally and spatially constrained ICA of fMRI data analysis","volume":"9","author":"Wang","year":"2014","journal-title":"PloS One"},{"issue":"12","key":"10.1016\/j.neuroimage.2018.02.062_bib54","doi-asserted-by":"crossref","first-page":"6166","DOI":"10.1002\/mp.12599","article-title":"PEAR: Periodic and Fixed Rank Separation for Fast FMRI","volume":"44","author":"Weizman","year":"2017","journal-title":"Med. Phys."},{"issue":"6","key":"10.1016\/j.neuroimage.2018.02.062_bib55","doi-asserted-by":"crossref","first-page":"1690","DOI":"10.1002\/mrm.22767","article-title":"Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations","volume":"65","author":"Wilm","year":"2011","journal-title":"Magnetic Resonance in Medicine"},{"issue":"1","key":"10.1016\/j.neuroimage.2018.02.062_bib56","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1109\/TMI.2006.885337","article-title":"An optimal radial profile order based on the Golden Ratio for time-resolved MRI","volume":"26","author":"Winkelmann","year":"2007","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"7","key":"10.1016\/j.neuroimage.2018.02.062_bib57","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1089\/brain.2014.0294","article-title":"Direct imaging of functional networks","volume":"4","author":"Wong","year":"2014","journal-title":"Brain Connectivity"},{"key":"10.1016\/j.neuroimage.2018.02.062_bib58","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1016\/j.neuroimage.2014.01.045","article-title":"Compressed sensing fMRI using gradient-recalled echo and EPI sequences","volume":"92C","author":"Zong","year":"2014","journal-title":"NeuroImage"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918301691?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811918301691?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,7,12]],"date-time":"2020-07-12T22:41:22Z","timestamp":1594593682000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811918301691"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,7]]},"references-count":56,"alternative-id":["S1053811918301691"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.02.062","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2018,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Recovering task fMRI signals from highly under-sampled data with low-rank and temporal subspace constraints","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2018.02.062","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 The Authors. Published by Elsevier Inc.","name":"copyright","label":"Copyright"}]}}