{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T08:36:24Z","timestamp":1722846984184},"reference-count":66,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"16 NIH Institutes and Centers"},{"name":"McDonnell Center"},{"name":"Collaborative Research Center","award":["SFB\/TRR 125"]},{"DOI":"10.13039\/501100001659","name":"German Research Foundation","doi-asserted-by":"publisher","award":["INST 35\/1120-1"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"DFG","doi-asserted-by":"publisher","award":["MA 6340\/10-1"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001659","name":"DFG","doi-asserted-by":"publisher","award":["MA 6340\/12-1"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.neuroimage.2017.07.028","type":"journal-article","created":{"date-parts":[[2017,7,15]],"date-time":"2017-07-15T15:00:16Z","timestamp":1500130816000},"page":"417-429","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":42,"special_numbering":"C","title":["Fiber tractography using machine learning"],"prefix":"10.1016","volume":"158","author":[{"given":"Peter F.","family":"Neher","sequence":"first","affiliation":[]},{"given":"Marc-Alexandre","family":"C\u00f4t\u00e9","sequence":"additional","affiliation":[]},{"given":"Jean-Christophe","family":"Houde","sequence":"additional","affiliation":[]},{"given":"Maxime","family":"Descoteaux","sequence":"additional","affiliation":[]},{"given":"Klaus H.","family":"Maier-Hein","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2017.07.028_bib1","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1016\/j.media.2011.01.003","article-title":"A\u00a0Hough transform global probabilistic approach to multiple-subject diffusion MRI tractography","volume":"15","author":"Aganj","year":"2011","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib2","series-title":"IEEE International Symposium on Biomedical Imaging: from Nano to Macro","first-page":"1398","article-title":"ODF reconstruction in q-ball imaging with solid angle consideration","author":"Aganj","year":"2009"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib3","series-title":"Biennial International Conference on Information Processing in Medical Imaging","first-page":"76","article-title":"Maximum entropy spherical deconvolution for diffusion MRI","author":"Alexander","year":"2005"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib4","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.neuroimage.2017.02.089","article-title":"Image quality transfer and applications in diffusion MRI","volume":"152","author":"Alexander","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib5","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.neuroimage.2005.03.042","article-title":"Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain","volume":"27","author":"Assaf","year":"2005","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib6","doi-asserted-by":"crossref","first-page":"1347","DOI":"10.1002\/mrm.21577","article-title":"AxCaliber: a method for measuring axon diameter distribution from diffusion MRI","volume":"59","author":"Assaf","year":"2008","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib7","series-title":"Proc. International Society for Magnetic Resonance in Medicine","article-title":"Fiber-tractography via diffusion tensor MRI","author":"Basser","year":"1998"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib8","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1006\/jmrb.1994.1037","article-title":"Estimation of the effective self-diffusion tensor from the NMR spin echo","volume":"103","author":"Basser","year":"1994","journal-title":"J.\u00a0Magn. Reson. B"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib9","series-title":"Proc. Int. Soc. Magn. Reson. Med. Presented at the ISMRM","article-title":"Improved tractography by modelling sub-voxel fibre patterns using asymmetric fibre orientation distributions","author":"Bastiani","year":"2016"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib10","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.neuroimage.2006.09.018","article-title":"Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?","volume":"34","author":"Behrens","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib11","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.neuroimage.2007.08.021","article-title":"Probabilistic streamline q-ball tractography using the residual bootstrap","volume":"39","author":"Berman","year":"2008","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib12","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1007\/BF00117831","article-title":"Technical note: some properties of splitting criteria","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib13","series-title":"Proceedings of the 23rd International Conference on Machine Learning","first-page":"161","article-title":"An empirical comparison of supervised learning algorithms","author":"Caruana","year":"2006"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib14","doi-asserted-by":"crossref","first-page":"989","DOI":"10.1016\/j.medengphy.2008.01.010","article-title":"A\u00a0multiple streamline approach to high angular resolution diffusion tractography","volume":"30","author":"Chao","year":"2008","journal-title":"Med. Eng. Phys."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib15","doi-asserted-by":"crossref","first-page":"844","DOI":"10.1016\/j.media.2013.03.009","article-title":"Tractometer: towards validation of tractography pipelines","volume":"17","author":"C\u00f4t\u00e9","year":"2013","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib16","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1109\/TMI.2013.2285500","article-title":"Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI","volume":"33","author":"Daducci","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib17","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1109\/TMI.2014.2352414","article-title":"COMMIT: convex optimization modeling for microstructure informed tractography","volume":"34","author":"Daducci","year":"2015","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib18","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1002\/mrm.21277","article-title":"Regularized, fast, and robust analytical Q-ball imaging","volume":"58","author":"Descoteaux","year":"2007","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib19","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1109\/TMI.2008.2004424","article-title":"Deterministic and probabilistic tractography based on complex fibre orientation distributions","volume":"28","author":"Descoteaux","year":"2009","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib20","doi-asserted-by":"crossref","first-page":"1367","DOI":"10.3171\/2013.2.JNS121294","article-title":"White matter fiber tractography: why we need to move beyond DTI: clinical article","volume":"118","author":"Farquharson","year":"2013","journal-title":"J.\u00a0Neurosurg."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib21","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.neuroimage.2011.01.032","article-title":"Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom","volume":"56","author":"Fillard","year":"2011","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib22","series-title":"International Conference on Medical Image Computing and Computer-assisted Intervention","first-page":"927","article-title":"A\u00a0novel global tractography algorithm based on an adaptive spin glass model","author":"Fillard","year":"2009"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib23","doi-asserted-by":"crossref","first-page":"965","DOI":"10.1109\/TMI.2006.877093","article-title":"A\u00a0Bayesian approach for stochastic white matter tractography","volume":"25","author":"Friman","year":"2006","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib24","doi-asserted-by":"crossref","first-page":"441","DOI":"10.3414\/ME11-02-0031","article-title":"MITK diffusion imaging","volume":"51","author":"Fritzsche","year":"2012","journal-title":"Methods Inf. Med."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib25","doi-asserted-by":"crossref","first-page":"1344","DOI":"10.1109\/TMI.2016.2551324","article-title":"Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans","volume":"35","author":"Golkov","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib26","series-title":"Second Workshop on Transfer and Multi-task Learning: Theory Meets Practice, Neural Information Processing Systems (NIPS). Montreal, Canada","article-title":"Learning from small amounts of labeled data in a brain tumor classification task","author":"G\u00f6tz","year":"2014"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib27","doi-asserted-by":"crossref","first-page":"1320","DOI":"10.1016\/j.media.2014.04.007","article-title":"Real-time ultrasound transducer localization in fluoroscopy images by transfer learning from synthetic training data","volume":"18","author":"Heimann","year":"2014","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib28","doi-asserted-by":"crossref","first-page":"1031","DOI":"10.1088\/0266-5611\/19\/5\/303","article-title":"Persistent angular structure: new insights from diffusion magnetic resonance imaging data","volume":"19","author":"Jansons","year":"2003","journal-title":"Inverse Probl."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib29","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1089\/brain.2011.0033","article-title":"Tractography: where do we go from here?","volume":"1","author":"Jbabdi","year":"2011","journal-title":"Brain Connect."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib30","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.neuroimage.2007.04.039","article-title":"A\u00a0Bayesian framework for global tractography","volume":"37","author":"Jbabdi","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib31","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1016\/j.neuroimage.2014.07.061","article-title":"Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data","volume":"103","author":"Jeurissen","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib32","doi-asserted-by":"crossref","first-page":"1216","DOI":"10.1002\/mrm.20670","article-title":"Multitensor approach for analysis and tracking of complex fiber configurations","volume":"54","author":"Kreher","year":"2005","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib33","doi-asserted-by":"crossref","first-page":"306","DOI":"10.1002\/hbm.10102","article-title":"White matter tractography using diffusion tensor deflection","volume":"18","author":"Lazar","year":"2003","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib34","doi-asserted-by":"crossref","DOI":"10.3389\/fneur.2014.00232","article-title":"Global tractography with embedded anatomical priors for quantitative connectivity analysis","volume":"5","author":"Lemkaddem","year":"2014","journal-title":"Front. Neurol."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib35","doi-asserted-by":"crossref","first-page":"1076","DOI":"10.1109\/TKDE.2013.111","article-title":"Adaptation regularization: a general framework for transfer learning","volume":"26","author":"Long","year":"2014","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib36","series-title":"Unsupervised Domain Adaptation with Residual Transfer Networks","author":"Long","year":"2016"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib37","first-page":"084137","article-title":"Tractography-based connectomes are dominated by false-positive connections","author":"Maier-Hein","year":"2016","journal-title":"bioRxiv"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib38","doi-asserted-by":"crossref","first-page":"1664","DOI":"10.1109\/TMI.2010.2048121","article-title":"Filtered multitensor tractography","volume":"29","author":"Malcolm","year":"2010","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib39","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1016\/j.neuroimage.2013.04.009","article-title":"Toward global tractography","volume":"80","author":"Mangin","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib40","series-title":"Teaching for Transfer: Fostering Generalization in Learning","author":"McKeough","year":"2013"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib41","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1002\/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3","article-title":"Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging","volume":"45","author":"Mori","year":"1999","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib42","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.neuroimage.2017.02.013","article-title":"Machine learning based compartment models with permeability for white matter microstructure imaging","volume":"150","author":"Nedjati-Gilani","year":"2017","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib43","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.media.2015.10.011","article-title":"Strengths and weaknesses of state of the art fiber tractography pipelines\u2013A comprehensive in-vivo and phantom evaluation study using Tractometer","volume":"26","author":"Neher","year":"2015","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib44","series-title":"Proceedings of International Society of Magnetic Resonance in Medicine","article-title":"A\u00a0machine learning based approach to fiber tractography","author":"Neher","year":"2015"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib45","doi-asserted-by":"crossref","first-page":"1460","DOI":"10.1002\/mrm.25045","article-title":"Fiberfox: facilitating the creation of realistic white matter software phantoms","volume":"72","author":"Neher","year":"2014","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib46","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.wneu.2013.08.035","article-title":"Fiber tracking\u2014we should move beyond diffusion tensor imaging","volume":"82","author":"Nimsky","year":"2014","journal-title":"World Neurosurg."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib47","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1007\/s11548-013-0840-8","article-title":"The medical imaging interaction toolkit: challenges and advances","volume":"8","author":"Nolden","year":"2013","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib48","doi-asserted-by":"crossref","first-page":"1345","DOI":"10.1109\/TKDE.2009.191","article-title":"A\u00a0survey on transfer learning","volume":"22","author":"Pan","year":"2010","journal-title":"Knowl. Data Eng. IEEE Trans. On."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib49","doi-asserted-by":"crossref","first-page":"2241","DOI":"10.1016\/j.neuroimage.2011.09.081","article-title":"Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison","volume":"59","author":"Panagiotaki","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib50","doi-asserted-by":"crossref","first-page":"964","DOI":"10.1016\/j.neuroimage.2016.09.058","article-title":"Disentangling micro from mesostructure by diffusion MRI: a Bayesian approach","volume":"147","author":"Reisert","year":"2017","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib51","doi-asserted-by":"crossref","first-page":"955","DOI":"10.1016\/j.neuroimage.2010.09.016","article-title":"Global fiber reconstruction becomes practical","volume":"54","author":"Reisert","year":"2011","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib52","first-page":"402","article-title":"Beyond crossing fibers: tractography exploiting sub-voxel fibre dispersion and neighbourhood structure","volume":"23","author":"Rowe","year":"2013","journal-title":"Inf. Process. Med. Imaging Proc. Conf."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib53","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.neuroimage.2008.01.028","article-title":"Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI","volume":"41","author":"Savadjiev","year":"2008","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib54","series-title":"International Conference on Medical Image Computing and Computer-assisted Intervention","first-page":"493","article-title":"Learning a reliable estimate of the number of fiber directions in diffusion MRI","author":"Schultz","year":"2012"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib55","series-title":"International Conference on Medical Image Computing and Computer-assisted Intervention","first-page":"674","article-title":"Multi-diffusion-tensor fitting via spherical deconvolution: a unifying framework","author":"Schultz","year":"2010"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib56","series-title":"Advances in Neural Information Processing Systems","first-page":"2110","article-title":"Learning transferrable representations for unsupervised domain adaptation","author":"Sener","year":"2016"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib57","doi-asserted-by":"crossref","first-page":"1412","DOI":"10.1016\/j.neuroimage.2012.01.056","article-title":"Ball and rackets: inferring fiber fanning from diffusion-weighted MRI","volume":"60","author":"Sotiropoulos","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib58","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1002\/ima.22005","article-title":"MRtrix: diffusion tractography in crossing fiber regions","volume":"22","author":"Tournier","year":"2012","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib59","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.1016\/j.neuroimage.2007.02.016","article-title":"Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution","volume":"35","author":"Tournier","year":"2007","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib60","doi-asserted-by":"crossref","first-page":"1358","DOI":"10.1002\/mrm.20279","article-title":"Q-ball imaging","volume":"52","author":"Tuch","year":"2004","journal-title":"Magn. Reson Med."},{"key":"10.1016\/j.neuroimage.2017.07.028_bib61","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.neuroimage.2013.05.041","article-title":"The WU-Minn human connectome project: an overview","volume":"80","author":"Van Essen","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib62","doi-asserted-by":"crossref","first-page":"1299","DOI":"10.1016\/j.neuroimage.2012.01.032","article-title":"The future of the human connectome","volume":"62","author":"Van Essen","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib63","doi-asserted-by":"crossref","first-page":"2222","DOI":"10.1016\/j.neuroimage.2012.02.018","article-title":"The Human Connectome Project: a data acquisition perspective","volume":"62","author":"Van Essen","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib64","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1016\/j.neuroimage.2012.10.058","article-title":"BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory","volume":"66","author":"Vorburger","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib65","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1016\/j.neuroimage.2012.03.072","article-title":"NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain","volume":"61","author":"Zhang","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.neuroimage.2017.07.028_bib66","doi-asserted-by":"crossref","first-page":"1397","DOI":"10.1109\/TMI.2013.2257179","article-title":"Logical foundations and fast implementation of probabilistic tractography","volume":"32","author":"Zhang","year":"2013","journal-title":"IEEE Trans. Med. Imaging"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811917305967?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811917305967?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,1,3]],"date-time":"2019-01-03T17:22:27Z","timestamp":1546536147000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811917305967"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":66,"alternative-id":["S1053811917305967"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2017.07.028","relation":{"has-preprint":[{"id-type":"doi","id":"10.1101\/104190","asserted-by":"object"}]},"ISSN":["1053-8119"],"issn-type":[{"value":"1053-8119","type":"print"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fiber tractography using machine learning","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2017.07.028","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}