{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T02:55:17Z","timestamp":1740106517586,"version":"3.37.3"},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,5,1]],"date-time":"2016-05-01T00:00:00Z","timestamp":1462060800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["1K25HD074652","NS071221"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007421","name":"Li Ka Shing Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100007421","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2016,5]]},"DOI":"10.1016\/j.neuroimage.2016.02.067","type":"journal-article","created":{"date-parts":[[2016,3,1]],"date-time":"2016-03-01T23:08:29Z","timestamp":1456873709000},"page":"398-405","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":61,"special_numbering":"C","title":["Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions"],"prefix":"10.1016","volume":"132","author":[{"given":"Srikanth","family":"Ryali","sequence":"first","affiliation":[]},{"given":"Yen-Yu Ian","family":"Shih","sequence":"additional","affiliation":[]},{"given":"Tianwen","family":"Chen","sequence":"additional","affiliation":[]},{"given":"John","family":"Kochalka","sequence":"additional","affiliation":[]},{"given":"Daniel","family":"Albaugh","sequence":"additional","affiliation":[]},{"given":"Zhongnan","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Kaustubh","family":"Supekar","sequence":"additional","affiliation":[]},{"given":"Jin Hyung","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Vinod","family":"Menon","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2016.02.067_bb0005","article-title":"Causal interactions within a frontal-cingulate-parietal network during cognitive control: convergent evidence from a multisite\u2013multitask investigation","author":"Cai","year":"2015","journal-title":"Cereb. Cortex"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0010","doi-asserted-by":"crossref","first-page":"1142","DOI":"10.1016\/j.neuroimage.2015.07.063","article-title":"Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating","volume":"125","author":"Cooray","year":"2016","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0015","doi-asserted-by":"crossref","first-page":"2089","DOI":"10.1016\/j.physd.2009.08.002","article-title":"Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models","volume":"238","author":"Daunizeau","year":"2009","journal-title":"Phys. D"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0020","doi-asserted-by":"crossref","first-page":"2683","DOI":"10.1371\/journal.pbio.0060315","article-title":"Identifying neural drivers with functional MRI: an electrophysiological validation","volume":"6","author":"David","year":"2008","journal-title":"PLoS Biol."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0025","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1016\/S1053-8119(03)00202-7","article-title":"Dynamic causal modelling","volume":"19","author":"Friston","year":"2003","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0030","doi-asserted-by":"crossref","first-page":"849","DOI":"10.1016\/j.neuroimage.2008.02.054","article-title":"DEM: a variational treatment of dynamic systems","volume":"41","author":"Friston","year":"2008","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0035","doi-asserted-by":"crossref","first-page":"7091","DOI":"10.1523\/JNEUROSCI.4692-12.2013","article-title":"Cognitive control and the salience network: an investigation of error processing and effective connectivity","volume":"33","author":"Ham","year":"2013","journal-title":"J. Neurosci."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0040","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1016\/j.neuroimage.2015.07.078","article-title":"Physiologically informed dynamic causal modeling of fMRI data","volume":"122","author":"Havlicek","year":"2015","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0045","doi-asserted-by":"crossref","first-page":"15086","DOI":"10.1523\/JNEUROSCI.0007-11.2011","article-title":"Characterization of the functional MRI response temporal linearity via optical control of neocortical pyramidal neurons","volume":"31","author":"Kahn","year":"2011","journal-title":"J. Neurosci."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0050","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1016\/j.neuroimage.2012.10.052","article-title":"Measuring relative timings of brain activities using fMRI","volume":"66","author":"Katwal","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0055","doi-asserted-by":"crossref","first-page":"21","DOI":"10.3389\/fninf.2011.00021","article-title":"Tracing activity across the whole brain neural network with optogenetic functional magnetic resonance imaging","volume":"5","author":"Lee","year":"2011","journal-title":"Front. Neuroinform."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0060","doi-asserted-by":"crossref","first-page":"2244","DOI":"10.1016\/j.neuroimage.2012.01.116","article-title":"Informing brain connectivity with optogenetic functional magnetic resonance imaging","volume":"62","author":"Lee","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0065","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/nature09108","article-title":"Global and local fMRI signals driven by neurons defined optogenetically by type and wiring","volume":"465","author":"Lee","year":"2010","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0070","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1006\/nimg.2000.0728","article-title":"Detection power, estimation efficiency, and predictability in event-related fMRI","volume":"13","author":"Liu","year":"2001","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0075","doi-asserted-by":"crossref","DOI":"10.1063\/1.4816009","article-title":"Pinning controllability of complex networks with community structure","volume":"23","author":"Miao","year":"2013","journal-title":"Chaos"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0080","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1002\/hbm.20182","article-title":"A Bayesian approach to determining connectivity of the human brain","volume":"27","author":"Patel","year":"2006","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0085","doi-asserted-by":"crossref","first-page":"838","DOI":"10.1016\/j.neuroimage.2011.06.068","article-title":"Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al. simulation study","volume":"58","author":"Ramsey","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0090","first-page":"1","article-title":"Construct validation of a DCM for resting state fMRI","volume":"106C","author":"Razi","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0095","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1016\/j.neuroimage.2004.11.017","article-title":"Mapping directed influence over the brain using granger causality and fMRI","volume":"25","author":"Roebroeck","year":"2005","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0100","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1016\/j.neuroimage.2010.09.052","article-title":"Multivariate dynamical systems models for estimating causal interactions in fMRI","volume":"54","author":"Ryali","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0105","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1007\/978-1-59745-543-5_10","article-title":"Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents","volume":"489","author":"Sanganahalli","year":"2009","journal-title":"Methods Mol. Biol."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0110","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.neuroimage.2011.02.008","article-title":"The effect of intra- and inter-subject variability of hemodynamic responses on group level Granger causality analyses","volume":"57","author":"Schippers","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0115","doi-asserted-by":"crossref","first-page":"538","DOI":"10.1016\/j.neuroimage.2006.04.214","article-title":"A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI","volume":"32","author":"Schwarz","year":"2006","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0120","doi-asserted-by":"crossref","first-page":"540","DOI":"10.1016\/j.neuroimage.2012.09.049","article-title":"Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling","volume":"65","author":"Seth","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0125","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.neuroimage.2013.01.062","article-title":"Ultra high-resolution fMRI and electrophysiology of the rat primary somatosensory cortex","volume":"73","author":"Shih","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0130","doi-asserted-by":"crossref","first-page":"70","DOI":"10.3389\/fnins.2013.00070","article-title":"Identifying effective connectivity parameters in simulated fMRI: a direct comparison of switching linear dynamic system, stochastic dynamic causal, and multivariate autoregressive models","volume":"7","author":"Smith","year":"2013","journal-title":"Front. Neurosci."},{"issue":"3","key":"10.1016\/j.neuroimage.2016.02.067_bb0135","doi-asserted-by":"crossref","first-page":"1027","DOI":"10.1016\/j.neuroimage.2009.11.081","article-title":"Identification and validation of effective connectivity networks in functional magnetic resonance imaging using switching linear dynamic systems","volume":"52","author":"Smith","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0140","doi-asserted-by":"crossref","first-page":"875","DOI":"10.1016\/j.neuroimage.2010.08.063","article-title":"Network modelling methods for FMRI","volume":"54","author":"Smith","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0145","doi-asserted-by":"crossref","first-page":"12569","DOI":"10.1073\/pnas.0800005105","article-title":"A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks","volume":"105","author":"Sridharan","year":"2008","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0150","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pcbi.1002374","article-title":"Developmental maturation of dynamic causal control signals in higher-order cognition: a neurocognitive network model","volume":"8","author":"Supekar","year":"2012","journal-title":"PLoS Comput. Biol."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0155","doi-asserted-by":"crossref","first-page":"1630","DOI":"10.1016\/j.neuropsychologia.2013.05.005","article-title":"The role of prestimulus activity in visual extinction","volume":"51","author":"Urner","year":"2013","journal-title":"Neuropsychologia"},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0160","doi-asserted-by":"crossref","first-page":"11532","DOI":"10.1523\/JNEUROSCI.1382-15.2015","article-title":"Cortical coupling reflects Bayesian belief updating in the deployment of spatial attention","volume":"35","author":"Vossel","year":"2015","journal-title":"J. Neurosci."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0165","doi-asserted-by":"crossref","first-page":"10637","DOI":"10.1523\/JNEUROSCI.0414-12.2012","article-title":"Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling","volume":"32","author":"Vossel","year":"2012","journal-title":"J. Neurosci."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0170","doi-asserted-by":"crossref","first-page":"6444","DOI":"10.1523\/JNEUROSCI.4939-12.2013","article-title":"Top-down regulation of default mode activity in spatial visual attention","volume":"33","author":"Wen","year":"2013","journal-title":"J. Neurosci."},{"key":"10.1016\/j.neuroimage.2016.02.067_bb0175","doi-asserted-by":"crossref","first-page":"1284","DOI":"10.1523\/JNEUROSCI.2817-11.2012","article-title":"Causal interactions in attention networks predict behavioral performance","volume":"32","author":"Wen","year":"2012","journal-title":"J. Neurosci."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811916001762?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811916001762?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,5]],"date-time":"2019-11-05T17:15:16Z","timestamp":1572974116000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811916001762"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,5]]},"references-count":35,"alternative-id":["S1053811916001762"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2016.02.067","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2016,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2016.02.067","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}