{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T16:52:34Z","timestamp":1732035154931},"reference-count":9,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2014,11,1]],"date-time":"2014-11-01T00:00:00Z","timestamp":1414800000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2015,1,9]],"date-time":"2015-01-09T00:00:00Z","timestamp":1420761600000},"content-version":"vor","delay-in-days":69,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100004440","name":"Wellcome Trust","doi-asserted-by":"publisher","award":["098369\/Z\/12\/Z"],"id":[{"id":"10.13039\/100004440","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2014,11]]},"DOI":"10.1016\/j.neuroimage.2014.07.051","type":"journal-article","created":{"date-parts":[[2014,8,3]],"date-time":"2014-08-03T08:32:10Z","timestamp":1407054730000},"page":"738-749","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":217,"special_numbering":"C","title":["Group-PCA for very large fMRI datasets"],"prefix":"10.1016","volume":"101","author":[{"given":"Stephen M.","family":"Smith","sequence":"first","affiliation":[]},{"given":"Aapo","family":"Hyv\u00e4rinen","sequence":"additional","affiliation":[]},{"given":"Ga\u00ebl","family":"Varoquaux","sequence":"additional","affiliation":[]},{"given":"Karla L.","family":"Miller","sequence":"additional","affiliation":[]},{"given":"Christian F.","family":"Beckmann","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"8","key":"10.1016\/j.neuroimage.2014.07.051_bb0005","doi-asserted-by":"crossref","first-page":"2866","DOI":"10.1016\/j.laa.2011.07.018","article-title":"Low-rank incremental methods for computing dominant singular subspaces","volume":"436","author":"Baker","year":"2012","journal-title":"Linear Algebra Appl."},{"issue":"2","key":"10.1016\/j.neuroimage.2014.07.051_bb0010","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1109\/TMI.2003.822821","article-title":"Probabilistic independent component analysis for functional magnetic resonance imaging","volume":"23","author":"Beckmann","year":"2004","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"10","key":"10.1016\/j.neuroimage.2014.07.051_bb0015","doi-asserted-by":"crossref","first-page":"4734","DOI":"10.1073\/pnas.0911855107","article-title":"Towards discovery science of human brain function","volume":"107","author":"Biswal","year":"2010","journal-title":"Proc. Nat. Acad. Sci. U.S.A."},{"issue":"3","key":"10.1016\/j.neuroimage.2014.07.051_bb0020","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1002\/hbm.1048","article-title":"A method for making group inferences from functional MRI data using independent component analysis","volume":"14","author":"Calhoun","year":"2001","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2014.07.051_bb0025","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.neuroimage.2013.04.127","article-title":"The minimal preprocessing pipelines for the Human Connectome Project","volume":"80","author":"Glasser","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.07.051_bb0030","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.neuroimage.2014.03.034","article-title":"ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging","volume":"95","author":"Griffanti","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.07.051_bb0035","series-title":"Annual Meeting of the Organization for Human Brain Mapping","article-title":"Computationally efficient group ICA for large groups","author":"Hyv\u00e4rinen","year":"2012"},{"key":"10.1016\/j.neuroimage.2014.07.051_bb0045","series-title":"NIPS Workshop on Low-Rank Methods for Large-Scale Machine Learning","article-title":"Fast and faster: a comparison of two streamed matrix decomposition algorithms","author":"\u0158eh\u016f\u0159ek","year":"2010"},{"key":"10.1016\/j.neuroimage.2014.07.051_bb0040","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.neuroimage.2013.05.041","article-title":"The WU-Minn Human Connectome Project: an overview","volume":"80","author":"Van Essen","year":"2013","journal-title":"NeuroImage"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S105381191400634X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S105381191400634X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,10,1]],"date-time":"2018-10-01T05:32:22Z","timestamp":1538371942000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S105381191400634X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,11]]},"references-count":9,"alternative-id":["S105381191400634X"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2014.07.051","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2014,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Group-PCA for very large fMRI datasets","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2014.07.051","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier Inc.","name":"copyright","label":"Copyright"}]}}