{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,1]],"date-time":"2025-05-01T08:27:50Z","timestamp":1746088070058,"version":"3.37.3"},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2014,10,1]],"date-time":"2014-10-01T00:00:00Z","timestamp":1412121600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2015,9,30]],"date-time":"2015-09-30T00:00:00Z","timestamp":1443571200000},"content-version":"am","delay-in-days":364,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["P41EB015896","S10RR019933","R01EB014894"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Harvard\/MGH Nuclear Medicine Training Program from the Department of Energy","award":["DE-SC0008430"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2014,10]]},"DOI":"10.1016\/j.neuroimage.2014.06.025","type":"journal-article","created":{"date-parts":[[2014,6,16]],"date-time":"2014-06-16T20:03:40Z","timestamp":1402949020000},"page":"192-199","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":130,"special_numbering":"C","title":["Dynamic functional imaging of brain glucose utilization using fPET-FDG"],"prefix":"10.1016","volume":"100","author":[{"given":"Marjorie","family":"Villien","sequence":"first","affiliation":[]},{"given":"Hsiao-Ying","family":"Wey","sequence":"additional","affiliation":[]},{"given":"Joseph B.","family":"Mandeville","sequence":"additional","affiliation":[]},{"given":"Ciprian","family":"Catana","sequence":"additional","affiliation":[]},{"given":"Jonathan R.","family":"Polimeni","sequence":"additional","affiliation":[]},{"given":"Christin Y.","family":"Sander","sequence":"additional","affiliation":[]},{"given":"Nicole R.","family":"Z\u00fcrcher","sequence":"additional","affiliation":[]},{"given":"Daniel B.","family":"Chonde","sequence":"additional","affiliation":[]},{"given":"Joanna S.","family":"Fowler","sequence":"additional","affiliation":[]},{"given":"Bruce R.","family":"Rosen","sequence":"additional","affiliation":[]},{"given":"Jacob M.","family":"Hooker","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neuroimage.2014.06.025_bb0005","doi-asserted-by":"crossref","first-page":"716","DOI":"10.1126\/science.1948051","article-title":"Functional mapping of the human visual cortex by magnetic resonance imaging","volume":"254","author":"Belliveau","year":"1991","journal-title":"Science"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0010","first-page":"1119","article-title":"Dynamic imaging of transient metabolic processes by small-animal PET for the evaluation of photosensitizers in photodynamic therapy of cancer","volume":"47","author":"B\u00e9rard","year":"2006","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0015","doi-asserted-by":"crossref","first-page":"953","DOI":"10.1016\/j.neuroimage.2012.01.012","article-title":"Dynamic models of BOLD contrast","volume":"62","author":"Buxton","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0020","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1038\/jcbfm.1993.6","article-title":"Comparison of bolus and infusion methods for receptor quantitation: Application to [18F]cyclofoxy and positron emission tomography","volume":"13","author":"Carson","year":"1993","journal-title":"J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0025","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1039\/c1pp05294b","article-title":"Predicting efficacy of photodynamic therapy by real-time FDG-PET in a mouse tumour model","volume":"11","author":"Cauchon","year":"2012","journal-title":"Photochem. Photobiol. Sci."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0030","doi-asserted-by":"crossref","first-page":"774","DOI":"10.1016\/j.neuroimage.2012.01.021","article-title":"FreeSurfer","volume":"62","author":"Fischl","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0035","doi-asserted-by":"crossref","first-page":"806","DOI":"10.1038\/323806a0","article-title":"Mapping human visual cortex with positron emission tomography","volume":"323","author":"Fox","year":"1986","journal-title":"Nature"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0040","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1126\/science.3260686","article-title":"Nonoxidative glucose consumption during focal physiologic neural activity","volume":"241","author":"Fox","year":"1988","journal-title":"Science"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0045","doi-asserted-by":"crossref","first-page":"856","DOI":"10.1016\/j.biopsych.2012.05.001","article-title":"Effects of chronic cocaine self-administration on cognition and cerebral glucose utilization in Rhesus monkeys","volume":"72","author":"Gould","year":"2012","journal-title":"Biol. Psychiatry"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0050","first-page":"1157","article-title":"The FDG lumped constant in normal human brain","volume":"43","author":"Graham","year":"2002","journal-title":"J. Nucl. Med. Off. Publ. Soc. Nucl. Med."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0055","doi-asserted-by":"crossref","first-page":"995","DOI":"10.1097\/00004647-200108000-00012","article-title":"The 18F-fluorodeoxyglucose lumped constant determined in human brain from extraction fractions of 18F-fluorodeoxyglucose and glucose","volume":"21","author":"Hasselbalch","year":"2001","journal-title":"J. Cereb. Blood Flow Metab."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0060","doi-asserted-by":"crossref","first-page":"930","DOI":"10.1016\/j.neuroimage.2012.02.022","article-title":"Calibrated fMRI","volume":"62","author":"Hoge","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0065","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1186\/2191-219X-2-63","article-title":"Cerebral blood flow and glucose metabolism in healthy volunteers measured using a high-resolution PET scanner","volume":"2","author":"Huisman","year":"2012","journal-title":"EJNMMI Res."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0070","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1212\/WNL.38.1.89","article-title":"Cerebral metabolism and patterned visual stimulation: A positron emission tomographic study of the human visual cortex","volume":"38","author":"Kushner","year":"1988","journal-title":"Neurology"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0075","doi-asserted-by":"crossref","first-page":"5675","DOI":"10.1073\/pnas.89.12.5675","article-title":"Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation","volume":"89","author":"Kwong","year":"1992","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0080","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1097\/00004647-200103000-00014","article-title":"A strategy for removing the bias in the graphical analysis method","volume":"21","author":"Logan","year":"2001","journal-title":"J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0085","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1001\/archpsyc.1990.01810180067010","article-title":"Cocaine-induced redoppuction of glucose utilization in human brain: A study using positron emission tomography and [fluorine 18]-fluorodeoxyglucose","volume":"47","author":"London","year":"1990","journal-title":"Arch. Gen. Psychiatry"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0090","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.neuroimage.2013.02.036","article-title":"A receptor-based model for dopamine-induced fMRI signal","volume":"75","author":"Mandeville","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0095","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.pscychresns.2008.09.009","article-title":"Association between cerebral metabolic and structural abnormalities and cognitive performance in schizophrenia","volume":"173","author":"Molina","year":"2009","journal-title":"Psychiatry Res."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0100","series-title":"Emission tomography","first-page":"499","article-title":"Chapter 23 \u2014 Kinetic modeling in positron emission tomography","author":"Morris","year":"2004"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0105","doi-asserted-by":"crossref","first-page":"500","DOI":"10.1016\/j.neuroimage.2005.06.040","article-title":"Concurrent CBF and CMRGlc changes during human brain activation by combined fMRI-PET scanning","volume":"28","author":"Newberg","year":"2005","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0110","doi-asserted-by":"crossref","first-page":"5951","DOI":"10.1073\/pnas.89.13.5951","article-title":"Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging","volume":"89","author":"Ogawa","year":"1992","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0115","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1002\/ana.410060502","article-title":"Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method","volume":"6","author":"Phelps","year":"1979","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0120","first-page":"575","article-title":"Cerebral metabolic response to passive audiovisual stimulation in patients with Alzheimer\u2019s disease and healthy volunteers assessed by PET","volume":"41","author":"Pietrini","year":"2000","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0125","doi-asserted-by":"crossref","first-page":"1234","DOI":"10.1016\/j.neuroimage.2011.10.046","article-title":"Quantitative functional MRI: Concepts, issues and future challenges","volume":"62","author":"Pike","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0130","doi-asserted-by":"crossref","first-page":"1334","DOI":"10.1016\/j.neuroimage.2010.05.005","article-title":"Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1","volume":"52","author":"Polimeni","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0135","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1146\/annurev.neuro.29.051605.112819","article-title":"Brain work and brain imaging","volume":"29","author":"Raichle","year":"2006","journal-title":"Annu. Rev. Neurosci."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0145","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1161\/01.RES.44.1.127","article-title":"The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man","volume":"44","author":"Reivich","year":"1979","journal-title":"Circ. Res."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0140","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1038\/jcbfm.1985.24","article-title":"Glucose metabolic rate kinetic model parameter determination in humans: The lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose","volume":"5","author":"Reivich","year":"1985","journal-title":"J. Cereb. Blood Flow Metab."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0150","doi-asserted-by":"crossref","DOI":"10.1073\/pnas.1220512110","article-title":"Neurovascular coupling to D2\/D3 dopamine receptor occupancy using simultaneous PET\/functional MRI","author":"Sander","year":"2013","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0155","doi-asserted-by":"crossref","first-page":"765","DOI":"10.1038\/jcbfm.1990.134","article-title":"Influence of plasma glucose concentration on lumped constant of the deoxyglucose method: Effects of hyperglycemia in the rat","volume":"10","author":"Schuier","year":"1990","journal-title":"J. Cereb. Blood Flow Metab. Off. J. Int. Soc. Cereb. Blood Flow Metab."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0160","doi-asserted-by":"crossref","first-page":"897","DOI":"10.1111\/j.1471-4159.1977.tb10649.x","article-title":"The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat","volume":"28","author":"Sokoloff","year":"1977","journal-title":"J. Neurochem."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0165","doi-asserted-by":"crossref","first-page":"1036","DOI":"10.1016\/j.neuroimage.2006.06.065","article-title":"Human brain glucose metabolism may evolve during activation: Findings from a modified FDG PET paradigm","volume":"33","author":"Vlassenko","year":"2006","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0170","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1038\/jcbfm.2010.154","article-title":"Baseline CBF, and BOLD, CBF, and CMRO2 fMRI of visual and vibrotactile stimulations in baboons","volume":"31","author":"Wey","year":"2010","journal-title":"J. Cereb. Blood Flow Metab."},{"key":"10.1016\/j.neuroimage.2014.06.025_bb0175","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1176\/jnp.2009.21.2.132","article-title":"Changes in relative glucose metabolic rate following cortisol administration in aging veterans with posttraumatic stress disorder: An FDG-PET neuroimaging study","volume":"21","author":"Yehuda","year":"2009","journal-title":"J. Neuropsychiatry Clin. Neurosci."}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811914005023?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811914005023?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,21]],"date-time":"2021-04-21T02:17:44Z","timestamp":1618971464000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811914005023"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,10]]},"references-count":35,"alternative-id":["S1053811914005023"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2014.06.025","relation":{},"ISSN":["1053-8119"],"issn-type":[{"type":"print","value":"1053-8119"}],"subject":[],"published":{"date-parts":[[2014,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Dynamic functional imaging of brain glucose utilization using fPET-FDG","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2014.06.025","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}