{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T22:56:58Z","timestamp":1722985018751},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2013,11,1]],"date-time":"2013-11-01T00:00:00Z","timestamp":1383264000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"DOD","award":["W81XWH-08-2-0144"]},{"DOI":"10.13039\/100000874","name":"Brain and Behavior Research Foundation","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100000874","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["NeuroImage"],"published-print":{"date-parts":[[2013,11]]},"DOI":"10.1016\/j.neuroimage.2013.05.072","type":"journal-article","created":{"date-parts":[[2013,5,24]],"date-time":"2013-05-24T00:46:33Z","timestamp":1369356393000},"page":"127-136","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":31,"special_numbering":"C","title":["Predicting intrinsic brain activity"],"prefix":"10.1016","volume":"82","author":[{"given":"R. Cameron","family":"Craddock","sequence":"first","affiliation":[]},{"given":"Michael P.","family":"Milham","sequence":"additional","affiliation":[]},{"given":"Stephen M.","family":"LaConte","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neuroimage.2013.05.072_bb0005","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1111\/j.2517-6161.1995.tb02031.x","article-title":"Controlling the false discovery rate: a practical and powerful approach to multiple testing","volume":"57","author":"Benjamini","year":"1995","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0010","doi-asserted-by":"crossref","first-page":"4734","DOI":"10.1073\/pnas.0911855107","article-title":"Toward discovery science of human brain function","volume":"107","author":"Biswal","year":"2010","journal-title":"Proc. Natl. Acad. Sci."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0015","series-title":"Proceedings of the Fifth Annual Workshop on Computational Learning Theory (ACM)","first-page":"144","article-title":"A training algorithm for optimal margin classifiers","author":"Boser","year":"1992"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0020","doi-asserted-by":"crossref","first-page":"1404","DOI":"10.1016\/j.neuroimage.2011.08.044","article-title":"Test\u2013retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures","volume":"59","author":"Braun","year":"2012","journal-title":"NeuroImage"},{"issue":"Suppl. 1","key":"10.1016\/j.neuroimage.2013.05.072_bb0025","doi-asserted-by":"crossref","first-page":"S234","DOI":"10.1016\/j.neuroimage.2004.07.012","article-title":"Wavelets and functional magnetic resonance imaging of the human brain","volume":"23","author":"Bullmore","year":"2004","journal-title":"NeuroImage"},{"issue":"1","key":"10.1016\/j.neuroimage.2013.05.072_bb0030","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/S0893-6080(03)00169-2","article-title":"Practical selection of SVM parameters and noise estimation for SVM regression","volume":"17","author":"Cherkassky","year":"2004","journal-title":"Neural Netw."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0035","series-title":"Learning From Data: Concepts, Theory, and Methods","author":"Cherkassky","year":"2007"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0045","doi-asserted-by":"crossref","first-page":"662","DOI":"10.1016\/j.neuroimage.2010.03.058","article-title":"Kernel regression for fMRI pattern prediction","volume":"56","author":"Chu","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0040","series-title":"IEEE International Workshop on Pattern Recognition in NeuroImaging","first-page":"41","article-title":"Measuring the consistency of global functional connectivity using kernel regression methods","author":"Chu","year":"2011"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0055","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1006\/cbmr.1996.0014","article-title":"AFNI: software for analysis and visualization of functional magnetic resonance neuroimages","volume":"29","author":"Cox","year":"1996","journal-title":"Comput. Biomed. Res."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0050","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/S1053-8119(03)00049-1","article-title":"Functional magnetic resonance imaging (fMRI) \u201cbrain reading\u201d: detecting and classifying distributed patterns of fMRI activity in human visual cortex","volume":"19","author":"Cox","year":"2003","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0060","doi-asserted-by":"crossref","first-page":"1619","DOI":"10.1002\/mrm.22159","article-title":"Disease state prediction from resting state functional connectivity","volume":"62","author":"Craddock","year":"2009","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0065","doi-asserted-by":"crossref","first-page":"1914","DOI":"10.1002\/hbm.21333","article-title":"A whole brain fMRI atlas generated via spatially constrained spectral clustering","volume":"33","author":"Craddock","year":"2012","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0075","first-page":"155","article-title":"Support vector regression machines","volume":"9","author":"Drucker","year":"1997"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0085","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1002\/hbm.460020107","article-title":"Functional and effective connectivity in neuroimaging: a synthesis","volume":"2","author":"Friston","year":"1994","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0080","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1002\/hbm.460010108","article-title":"Time dependent changes in effective connectivity measured with PET","volume":"1","author":"Friston","year":"1993","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0090","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1002\/mrm.1910350312","article-title":"Movement-related effects in fMRI time-series","volume":"35","author":"Friston","year":"1996","journal-title":"Magn. Reson. Med."},{"issue":"4","key":"10.1016\/j.neuroimage.2013.05.072_bb0095","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1016\/S1053-8119(03)00202-7","article-title":"Dynamic causal modelling","volume":"19","author":"Friston","year":"2003","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0100","doi-asserted-by":"crossref","first-page":"2425","DOI":"10.1126\/science.1063736","article-title":"Distributed and overlapping representations of faces and objects in ventral temporal cortex","volume":"293","author":"Haxby","year":"2001","journal-title":"Science"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0105","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1038\/nrn1931","article-title":"Decoding mental states from brain activity in humans","volume":"7","author":"Haynes","year":"2006","journal-title":"Nat. Rev. Neurosci."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0110","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1006\/nimg.2002.1132","article-title":"Improved optimization for the robust and accurate linear registration and motion correction of brain images","volume":"17","author":"Jenkinson","year":"2002","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0115","series-title":"Advances in Kernel Methods \u2014 Support Vector Learning","article-title":"Making large-scale support vector machine learning practical","author":"Joachims","year":"1999"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0120","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1038\/nn1444","article-title":"Decoding the visual and subjective contents of the human brain","volume":"8","author":"Kamitani","year":"2005","journal-title":"Nat. Neurosci."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0125","doi-asserted-by":"crossref","first-page":"772","DOI":"10.1006\/nimg.2001.1033","article-title":"The quantitative evaluation of functional neuroimaging experiments: mutual information learning curves","volume":"15","author":"Kjems","year":"2002","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0130","doi-asserted-by":"crossref","first-page":"3863","DOI":"10.1073\/pnas.0600244103","article-title":"Information-based functional brain mapping","volume":"103","author":"Kriegeskorte","year":"2006","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0135","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1016\/j.neuroimage.2010.06.052","article-title":"Decoding fMRI brain states in real-time","volume":"56","author":"LaConte","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0140","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1006\/nimg.2002.1300","article-title":"The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics","volume":"18","author":"LaConte","year":"2003","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0150","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.neuroimage.2005.01.048","article-title":"Support vector machines for temporal classification of block design fMRI data","volume":"26","author":"LaConte","year":"2005","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0145","doi-asserted-by":"crossref","first-page":"1033","DOI":"10.1002\/hbm.20326","article-title":"Real-time fMRI using brain-state classification","volume":"28","author":"LaConte","year":"2007","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0155","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1006\/nimg.1999.0472","article-title":"Plurality and resemblance in fMRI data analysis","volume":"10","author":"Lange","year":"1999","journal-title":"NeuroImage"},{"issue":"3","key":"10.1016\/j.neuroimage.2013.05.072_bb0160","doi-asserted-by":"crossref","first-page":"2322","DOI":"10.1016\/j.neuroimage.2011.09.025","article-title":"Critical comments on dynamic causal modelling","volume":"59","author":"Lohmann","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0165","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.neuroimage.2005.07.005","article-title":"Non-white noise in fMRI: does modelling have an impact?","volume":"29","author":"Lund","year":"2006","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0175","doi-asserted-by":"crossref","first-page":"484","DOI":"10.1016\/j.media.2008.02.002","article-title":"Regions, systems, and the brain: hierarchical measures of functional integration in fMRI","volume":"12","author":"Marrelec","year":"2008","journal-title":"Med. Image Anal."},{"issue":"1\u20132","key":"10.1016\/j.neuroimage.2013.05.072_bb0170","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1002\/hbm.460020104","article-title":"Structural equation modeling and its application to network analysis in functional brain imaging","volume":"2","author":"McIntosh","year":"1994","journal-title":"Hum. Brain Mapp."},{"issue":"Pt 6","key":"10.1016\/j.neuroimage.2013.05.072_bb0180","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1093\/brain\/121.6.1013","article-title":"From sensation to cognition","volume":"121","author":"Mesulam","year":"1998","journal-title":"Brain"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0185","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1023\/B:MACH.0000035475.85309.1b","article-title":"Learning to decode cognitive states from brain images","volume":"57","author":"Mitchell","year":"2004","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0190","doi-asserted-by":"crossref","first-page":"980","DOI":"10.1016\/j.neuroimage.2005.06.070","article-title":"Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data","volume":"28","author":"Mour\u00e3o-Miranda","year":"2005","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0195","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1002\/mrm.1910150117","article-title":"Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE)","volume":"15","author":"Mugler","year":"1990","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0200","series-title":"Proceedings of the 7th International Conference on Artificial Neural Networks","first-page":"999","article-title":"Predicting time series with support vector machines","author":"M\u00fcller","year":"1997"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0205","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1016\/j.neuroimage.2006.09.032","article-title":"How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration","volume":"34","author":"Murphy","year":"2007","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0210","doi-asserted-by":"crossref","first-page":"1963","DOI":"10.1126\/science.1117645","article-title":"Category-specific cortical activity precedes retrieval during memory search","volume":"310","author":"Polyn","year":"2005","journal-title":"Science"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0215","doi-asserted-by":"crossref","first-page":"2142","DOI":"10.1016\/j.neuroimage.2011.10.018","article-title":"Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion","volume":"59","author":"Power","year":"2012","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0220","doi-asserted-by":"crossref","first-page":"3852","DOI":"10.1016\/j.neuroimage.2011.11.054","article-title":"Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty","volume":"59","author":"Ryali","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0225","doi-asserted-by":"crossref","first-page":"988","DOI":"10.1016\/S1053-8119(03)00116-2","article-title":"Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics","volume":"19","author":"Shaw","year":"2003","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0230","doi-asserted-by":"crossref","first-page":"2209","DOI":"10.1093\/cercor\/bhn256","article-title":"The resting brain: unconstrained yet reliable","volume":"19","author":"Shehzad","year":"2009","journal-title":"Cereb. Cortex"},{"issue":"Suppl. 1","key":"10.1016\/j.neuroimage.2013.05.072_bb0235","doi-asserted-by":"crossref","first-page":"S208","DOI":"10.1016\/j.neuroimage.2004.07.051","article-title":"Advances in functional and structural MR image analysis and implementation as FSL","volume":"23","author":"Smith","year":"2004","journal-title":"NeuroImage"},{"issue":"8","key":"10.1016\/j.neuroimage.2013.05.072_bb0240","doi-asserted-by":"crossref","first-page":"3131","DOI":"10.1073\/pnas.1121329109","article-title":"Temporally-independent functional modes of spontaneous brain activity","volume":"109","author":"Smith","year":"2012","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0245","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","article-title":"A tutorial on support vector regression","volume":"14","author":"Smola","year":"2004","journal-title":"Stat. Comput."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0250","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/S1364-6613(02)01943-5","article-title":"Making connections about brain connectivity","volume":"6","author":"Stone","year":"2002","journal-title":"Trends Cogn. Sci."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0255","doi-asserted-by":"crossref","first-page":"747","DOI":"10.1006\/nimg.2001.1034","article-title":"The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework","volume":"15","author":"Strother","year":"2002","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0260","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/S1364-6613(98)01259-5","article-title":"Complexity and coherency: integrating information in the brain","volume":"2","author":"Tononi","year":"1998","journal-title":"Trends Cogn. Sci."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0070","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1016\/j.neuroimage.2011.07.044","article-title":"The influence of head motion on intrinsic functional connectivity MRI","volume":"59","author":"Van Dijk","year":"2011","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0265","article-title":"Support vector method for function approximation, regression estimation and signal processing","volume":"9","author":"Vapnik","year":"1996"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0270","series-title":"Advances in Neural Information Processing Systems","article-title":"Brain covariance selection: better individual functional connectivity models using population prior","author":"Varoquaux","year":"2010"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0275","doi-asserted-by":"crossref","first-page":"e21976","DOI":"10.1371\/journal.pone.0021976","article-title":"Graph theoretical analysis of functional brain networks: test\u2013retest evaluation on short- and long-term resting-state functional MRI data","volume":"6","author":"Wang","year":"2011","journal-title":"PLoS One"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0280","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/42.906424","article-title":"Segmentation of brain MR images through a hidden Markov random field model and the expectation\u2013maximization algorithm","volume":"20","author":"Zhang","year":"2001","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"2","key":"10.1016\/j.neuroimage.2013.05.072_bb0285","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1111\/j.1467-9868.2005.00503.x","article-title":"Regularization and variable selection via the elastic net","volume":"67","author":"Zou","year":"2005","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0290","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.jneumeth.2008.04.012","article-title":"An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF","volume":"172","author":"Zou","year":"2008","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0295","doi-asserted-by":"crossref","first-page":"2163","DOI":"10.1016\/j.neuroimage.2009.10.080","article-title":"Reliable intrinsic connectivity networks: test\u2013retest evaluation using ICA and dual regression approach","volume":"49","author":"Zuo","year":"2010","journal-title":"NeuroImage"},{"key":"10.1016\/j.neuroimage.2013.05.072_bb0300","doi-asserted-by":"crossref","first-page":"1432","DOI":"10.1016\/j.neuroimage.2009.09.037","article-title":"The oscillating brain: complex and reliable","volume":"49","author":"Zuo","year":"2010","journal-title":"NeuroImage"},{"issue":"8","key":"10.1016\/j.neuroimage.2013.05.072_bb0305","doi-asserted-by":"crossref","first-page":"1862","DOI":"10.1093\/cercor\/bhr269","article-title":"Network centrality in the human functional connectome","volume":"22","author":"Zuo","year":"2011","journal-title":"Cereb. Cortex"}],"container-title":["NeuroImage"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811913005727?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1053811913005727?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,11]],"date-time":"2024-05-11T02:39:52Z","timestamp":1715395192000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1053811913005727"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013,11]]},"references-count":61,"alternative-id":["S1053811913005727"],"URL":"https:\/\/doi.org\/10.1016\/j.neuroimage.2013.05.072","relation":{},"ISSN":["1053-8119"],"issn-type":[{"value":"1053-8119","type":"print"}],"subject":[],"published":{"date-parts":[[2013,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Predicting intrinsic brain activity","name":"articletitle","label":"Article Title"},{"value":"NeuroImage","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neuroimage.2013.05.072","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2013 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}]}}