{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T20:40:12Z","timestamp":1731098412781,"version":"3.28.0"},"reference-count":49,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100021171","name":"Basic and Applied Basic Research Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2023A1515012954"],"id":[{"id":"10.13039\/501100021171","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100009047","name":"Shantou University","doi-asserted-by":"publisher","award":["NTF21035"],"id":[{"id":"10.13039\/100009047","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62106137","62372282"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.neunet.2024.106739","type":"journal-article","created":{"date-parts":[[2024,9,17]],"date-time":"2024-09-17T19:45:02Z","timestamp":1726602302000},"page":"106739","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Joint weight optimization for partial domain adaptation via kernel statistical distance estimation"],"prefix":"10.1016","volume":"180","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3692-0728","authenticated-orcid":false,"given":"Sentao","family":"Chen","sequence":"first","affiliation":[]}],"member":"78","reference":[{"unstructured":"Acuna, D., Zhang, G., Law, M. T., & Fidler, S. (2021). f-Domain Adversarial Learning: Theory and Algorithms. Vol. 139, In International conference on machine learning (pp. 66\u201375).","key":"10.1016\/j.neunet.2024.106739_b1"},{"key":"10.1016\/j.neunet.2024.106739_b2","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.neunet.2023.07.028","article-title":"Learning domain invariant representations by joint Wasserstein distance minimization","volume":"167","author":"And\u00e9ol","year":"2023","journal-title":"Neural Networks"},{"doi-asserted-by":"crossref","unstructured":"Bhushan Damodaran, B., Kellenberger, B., Flamary, R., Tuia, D., & Courty, N. (2018). Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation. In European conference on computer vision (pp. 447\u2013463).","key":"10.1016\/j.neunet.2024.106739_b3","DOI":"10.1007\/978-3-030-01225-0_28"},{"doi-asserted-by":"crossref","unstructured":"Cao, Z., Long, M., Wang, J., & Jordan, M. I. (2018). Partial Transfer Learning with Selective Adversarial Networks. In IEEE conference on computer vision and pattern recognition (pp. 2724\u20132732).","key":"10.1016\/j.neunet.2024.106739_b4","DOI":"10.1109\/CVPR.2018.00288"},{"doi-asserted-by":"crossref","unstructured":"Cao, Z., Ma, L., Long, M., & Wang, J. (2018). Partial Adversarial Domain Adaptation. In European conference on computer vision (pp. 135\u2013150).","key":"10.1016\/j.neunet.2024.106739_b5","DOI":"10.1007\/978-3-030-01237-3_9"},{"doi-asserted-by":"crossref","unstructured":"Cao, Z., You, K., Long, M., Wang, J., & Yang, Q. (2019). Learning to Transfer Examples for Partial Domain Adaptation. In IEEE conference on computer vision and pattern recognition (pp. 2980\u20132989).","key":"10.1016\/j.neunet.2024.106739_b6","DOI":"10.1109\/CVPR.2019.00310"},{"issue":"2","key":"10.1016\/j.neunet.2024.106739_b7","doi-asserted-by":"crossref","first-page":"1766","DOI":"10.1109\/TPAMI.2022.3159831","article-title":"From big to small: Adaptive learning to partial-set domains","volume":"45","author":"Cao","year":"2023","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2024.106739_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110300","article-title":"Decomposed adversarial domain generalization","volume":"263","author":"Chen","year":"2023","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.neunet.2024.106739_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2024.110295","article-title":"Multi-source domain adaptation with mixture of joint distributions","volume":"149","author":"Chen","year":"2024","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neunet.2024.106739_b10","doi-asserted-by":"crossref","first-page":"16509","DOI":"10.1007\/s00521-023-08520-1","article-title":"Joint-product representation learning for domain generalization in classification and regression","volume":"35","author":"Chen","year":"2023","journal-title":"Neural Computing and Applications"},{"key":"10.1016\/j.neunet.2024.106739_b11","doi-asserted-by":"crossref","first-page":"8264","DOI":"10.1109\/TIP.2020.3013167","article-title":"Domain adaptation by joint distribution invariant projections","volume":"29","author":"Chen","year":"2020","journal-title":"IEEE Transactions on Image Processing"},{"issue":"12","key":"10.1016\/j.neunet.2024.106739_b12","doi-asserted-by":"crossref","first-page":"5708","DOI":"10.1109\/TNNLS.2020.3027364","article-title":"Semi-supervised domain adaptation via asymmetric joint distribution matching","volume":"32","author":"Chen","year":"2021","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"11","key":"10.1016\/j.neunet.2024.106739_b13","doi-asserted-by":"crossref","first-page":"8630","DOI":"10.1109\/TNNLS.2022.3151683","article-title":"Domain neural adaptation","volume":"34","author":"Chen","year":"2023","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neunet.2024.106739_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109086","article-title":"Domain generalization by joint-product distribution alignment","volume":"134","author":"Chen","year":"2023","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neunet.2024.106739_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109271","article-title":"Riemannian representation learning for multi-source domain adaptation","volume":"137","author":"Chen","year":"2023","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neunet.2024.106739_b16","series-title":"Advances in neural information processing systems","first-page":"3730","article-title":"Joint distribution optimal transportation for domain adaptation","author":"Courty","year":"2017"},{"key":"10.1016\/j.neunet.2024.106739_b17","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neunet.2024.106739_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.109088","article-title":"Unsupervised domain adaptation via deep conditional adaptation network","volume":"134","author":"Ge","year":"2023","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neunet.2024.106739_b19","series-title":"Advances in neural information processing systems","first-page":"529","article-title":"Semi-supervised learning by entropy minimization","author":"Grandvalet","year":"2004"},{"key":"10.1016\/j.neunet.2024.106739_b20","series-title":"Advances in neural information processing systems","first-page":"14860","article-title":"Adversarial reweighting for partial domain adaptation","volume":"Vol. 34","author":"Gu","year":"2021"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In IEEE conference on computer vision and pattern recognition (pp. 770\u2013778).","key":"10.1016\/j.neunet.2024.106739_b21","DOI":"10.1109\/CVPR.2016.90"},{"doi-asserted-by":"crossref","unstructured":"Hu, J., Tuo, H., Wang, C., Qiao, L., Zhong, H., Yan, J., et al. (2020). Discriminative Partial Domain Adversarial Network. In European conference on computer vision (pp. 632\u2013648).","key":"10.1016\/j.neunet.2024.106739_b22","DOI":"10.1007\/978-3-030-58583-9_38"},{"key":"10.1016\/j.neunet.2024.106739_b23","article-title":"Correcting sample selection bias by unlabeled data","volume":"19","author":"Huang","year":"2006","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.neunet.2024.106739_b24","series-title":"A literature survey on domain adaptation of statistical classifiers","first-page":"1","author":"Jiang","year":"2008"},{"key":"10.1016\/j.neunet.2024.106739_b25","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.neucom.2020.05.098","article-title":"Joint distribution matching embedding for unsupervised domain adaptation","volume":"412","author":"Jin","year":"2020","journal-title":"Neurocomputing"},{"issue":"7","key":"10.1016\/j.neunet.2024.106739_b26","doi-asserted-by":"crossref","first-page":"2329","DOI":"10.1109\/TPAMI.2020.2964173","article-title":"Deep residual correction network for partial domain adaptation","volume":"43","author":"Li","year":"2021","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"unstructured":"Li, Y., Murias, M., Major, S., Dawson, G., & Carlson, D. (2019). On target shift in adversarial domain adaptation. In International conference on artificial intelligence and statistics (pp. 616\u2013625).","key":"10.1016\/j.neunet.2024.106739_b27"},{"doi-asserted-by":"crossref","unstructured":"Liang, J., Wang, Y., Hu, D., He, R., & Feng, J. (2020). A balanced and uncertainty-aware approach for partial domain adaptation. In European conference on computer vision (pp. 123\u2013140).","key":"10.1016\/j.neunet.2024.106739_b28","DOI":"10.1007\/978-3-030-58621-8_8"},{"key":"10.1016\/j.neunet.2024.106739_b29","first-page":"1","article-title":"Small is beautiful: Compressing deep neural networks for partial domain adaptation","author":"Ma","year":"2022","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"Nov","key":"10.1016\/j.neunet.2024.106739_b30","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"Maaten","year":"2008","journal-title":"Journal of Machine Learning Research"},{"unstructured":"Nguyen, A. T., Tran, T., Gal, Y., Torr, P. H., & Baydin, A. G. (2022). KL guided domain adaptation. In International conference on learning representations (pp. 1\u201312).","key":"10.1016\/j.neunet.2024.106739_b31"},{"year":"1999","author":"Nocedal","series-title":"Numerical optimization","key":"10.1016\/j.neunet.2024.106739_b32"},{"key":"10.1016\/j.neunet.2024.106739_b33","series-title":"Advances in neural information processing systems","first-page":"271","article-title":"f-GAN: Training generative neural samplers using variational divergence minimization","author":"Nowozin","year":"2016"},{"doi-asserted-by":"crossref","unstructured":"Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., & Wang, B. (2019). Moment matching for multi-source domain adaptation. In IEEE international conference on computer vision (pp. 1406\u20131415).","key":"10.1016\/j.neunet.2024.106739_b34","DOI":"10.1109\/ICCV.2019.00149"},{"year":"2008","author":"Qui\u00f1onero-Candela","series-title":"Dataset shift in machine learning","key":"10.1016\/j.neunet.2024.106739_b35"},{"issue":"5","key":"10.1016\/j.neunet.2024.106739_b36","doi-asserted-by":"crossref","first-page":"1989","DOI":"10.1109\/TNNLS.2020.2995648","article-title":"Learning target-domain-specific classifier for partial domain adaptation","volume":"32","author":"Ren","year":"2021","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"4","key":"10.1016\/j.neunet.2024.106739_b37","doi-asserted-by":"crossref","first-page":"4198","DOI":"10.1109\/TPAMI.2022.3190645","article-title":"BuresNet: Conditional bures metric for transferable representation learning","volume":"45","author":"Ren","year":"2023","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"doi-asserted-by":"crossref","unstructured":"Saenko, K., Kulis, B., Fritz, M., & Darrell, T. (2010). Adapting visual category models to new domains. In European conference on computer vision (pp. 213\u2013226).","key":"10.1016\/j.neunet.2024.106739_b38","DOI":"10.1007\/978-3-642-15561-1_16"},{"year":"2001","author":"Sch\u00f6lkopf","series-title":"Learning with kernels: support vector machines, regularization, optimization, and beyond","key":"10.1016\/j.neunet.2024.106739_b39"},{"issue":"3","key":"10.1016\/j.neunet.2024.106739_b40","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1162\/NECO_a_00407","article-title":"Sufficient dimension reduction via squared-loss mutual information estimation","volume":"25","author":"Suzuki","year":"2013","journal-title":"Neural Computation"},{"issue":"1","key":"10.1016\/j.neunet.2024.106739_b41","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1162\/NECO_a_00683","article-title":"Conditional density estimation with dimensionality reduction via squared-loss conditional entropy minimization","volume":"27","author":"Tangkaratt","year":"2014","journal-title":"Neural Computation"},{"key":"10.1016\/j.neunet.2024.106739_b42","first-page":"1415","article-title":"Feature extraction by non-parametric mutual information maximization","volume":"3","author":"Torkkola","year":"2003","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neunet.2024.106739_b43","series-title":"Uncertainty in artificial intelligence","first-page":"1970","article-title":"Multi-source domain adaptation via weighted joint distributions optimal transport","author":"Turrisi","year":"2022"},{"year":"1998","author":"Vapnik","series-title":"Statistical learning theory","key":"10.1016\/j.neunet.2024.106739_b44"},{"doi-asserted-by":"crossref","unstructured":"Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S. (2017). Deep Hashing Network for Unsupervised Domain Adaptation. In IEEE conference on computer vision and pattern recognition (pp. 5385\u20135394).","key":"10.1016\/j.neunet.2024.106739_b45","DOI":"10.1109\/CVPR.2017.572"},{"year":"2004","author":"Wasserman","series-title":"All of statistics: a concise course in statistical inference","key":"10.1016\/j.neunet.2024.106739_b46"},{"key":"10.1016\/j.neunet.2024.106739_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.ins.2024.120800","article-title":"Maximum likelihood weight estimation for partial domain adaptation","volume":"676","author":"Wen","year":"2024","journal-title":"Information Sciences"},{"key":"10.1016\/j.neunet.2024.106739_b48","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.neunet.2023.12.022","article-title":"Training multi-source domain adaptation network by mutual information estimation and minimization","volume":"171","author":"Wen","year":"2024","journal-title":"Neural Networks"},{"doi-asserted-by":"crossref","unstructured":"Zhang, J., Ding, Z., Li, W., & Ogunbona, P. (2018). Importance Weighted Adversarial Nets for Partial Domain Adaptation. In IEEE conference on computer vision and pattern recognition (pp. 8156\u20138164).","key":"10.1016\/j.neunet.2024.106739_b49","DOI":"10.1109\/CVPR.2018.00851"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608024006634?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608024006634?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T20:11:57Z","timestamp":1731096717000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608024006634"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":49,"alternative-id":["S0893608024006634"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2024.106739","relation":{},"ISSN":["0893-6080"],"issn-type":[{"type":"print","value":"0893-6080"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Joint weight optimization for partial domain adaptation via kernel statistical distance estimation","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2024.106739","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"106739"}}