{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T17:10:09Z","timestamp":1726333809315},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100013284","name":"Program for Jilin University Science and Technology Innovative Research Team","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013284","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013061","name":"Jilin Scientific and Technological Development Program","doi-asserted-by":"publisher","award":["20230201089GX"],"id":[{"id":"10.13039\/501100013061","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.neunet.2024.106497","type":"journal-article","created":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T17:22:29Z","timestamp":1719854549000},"page":"106497","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Unsupervised and semi-supervised domain adaptation networks considering both global knowledge and prototype-based local class information for Motor Imagery Classification"],"prefix":"10.1016","volume":"179","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6052-9860","authenticated-orcid":false,"given":"Dongxue","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3637-2581","authenticated-orcid":false,"given":"Huiying","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9415-0856","authenticated-orcid":false,"given":"Jingmeng","family":"Xie","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neunet.2024.106497_b1","doi-asserted-by":"crossref","first-page":"39","DOI":"10.3389\/fnins.2012.00039","article-title":"Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b","volume":"6","author":"Ang","year":"2012","journal-title":"Frontiers in Neuroscience"},{"issue":"7","key":"10.1016\/j.neunet.2024.106497_b2","doi-asserted-by":"crossref","first-page":"1352","DOI":"10.1109\/TNSRE.2019.2923315","article-title":"Weighted transfer learning for improving motor imagery-based brain\u2013computer interface","volume":"27","author":"Azab","year":"2019","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"key":"10.1016\/j.neunet.2024.106497_b3","series-title":"2013 35th annual international conference of the IEEE engineering in medicine and biology society","first-page":"2188","article-title":"Improving session-to-session transfer performance of motor imagery-based BCI using adaptive extreme learning machine","author":"Bamdadian","year":"2013"},{"issue":"3","key":"10.1016\/j.neunet.2024.106497_b4","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1113\/jphysiol.2006.125633","article-title":"Brain\u2013computer interfaces: communication and restoration of movement in paralysis","volume":"579","author":"Birbaumer","year":"2007","journal-title":"The Journal of Physiology"},{"issue":"14","key":"10.1016\/j.neunet.2024.106497_b5","doi-asserted-by":"crossref","first-page":"e49","DOI":"10.1093\/bioinformatics\/btl242","article-title":"Integrating structured biological data by kernel maximum mean discrepancy","volume":"22","author":"Borgwardt","year":"2006","journal-title":"Bioinformatics"},{"key":"10.1016\/j.neunet.2024.106497_b6","first-page":"1","article-title":"BCI competition 2008\u2013graz data set a","volume":"vol. 16","author":"Brunner","year":"2008"},{"key":"10.1016\/j.neunet.2024.106497_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.jneumeth.2022.109489","article-title":"Motor imagery EEG decoding using manifold embedded transfer learning","volume":"370","author":"Cai","year":"2022","journal-title":"Journal of Neuroscience Methods"},{"year":"2021","series-title":"Cross-subject domain adaptation for multi-frame EEG images","author":"Chen","key":"10.1016\/j.neunet.2024.106497_b8"},{"key":"10.1016\/j.neunet.2024.106497_b9","article-title":"Multiattention adaptation network for motor imagery recognition","author":"Chen","year":"2021","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics: Systems"},{"key":"10.1016\/j.neunet.2024.106497_b10","doi-asserted-by":"crossref","first-page":"1992","DOI":"10.1109\/TNSRE.2022.3191869","article-title":"Single-source to single-target cross-subject motor imagery classification based on multisubdomain adaptation network","volume":"30","author":"Chen","year":"2022","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"issue":"2","key":"10.1016\/j.neunet.2024.106497_b11","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aaf3f6","article-title":"Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI","volume":"16","author":"Fahimi","year":"2019","journal-title":"Journal of Neural Engineering"},{"issue":"9","key":"10.1016\/j.neunet.2024.106497_b12","doi-asserted-by":"crossref","first-page":"2755","DOI":"10.1109\/TNNLS.2018.2886414","article-title":"EEG-based spatio\u2013temporal convolutional neural network for driver fatigue evaluation","volume":"30","author":"Gao","year":"2019","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neunet.2024.106497_b13","unstructured":"Grigorescu, Sorin M., L\u00fcth, Thorsten, Fragkopoulos, Christos, Cyriacks, Marco, & Gr\u00e4ser, Axel A BCI-controlled robotic assistant for quadriplegic people in domestic and professional life. Robotica."},{"key":"10.1016\/j.neunet.2024.106497_b14","doi-asserted-by":"crossref","first-page":"128273","DOI":"10.1109\/ACCESS.2019.2939288","article-title":"Cross-subject EEG signal recognition using deep domain adaptation network","volume":"7","author":"Hang","year":"2019","journal-title":"IEEE Access"},{"issue":"7","key":"10.1016\/j.neunet.2024.106497_b15","doi-asserted-by":"crossref","first-page":"936","DOI":"10.1109\/TSMC.2015.2506618","article-title":"A wireless BCI and BMI system for wearable robots","volume":"46","author":"He","year":"2015","journal-title":"IEEE Transactions on Systems, Man, and Cybernetics: Systems"},{"key":"10.1016\/j.neunet.2024.106497_b16","doi-asserted-by":"crossref","first-page":"556","DOI":"10.1109\/TNSRE.2021.3059166","article-title":"Dynamic joint domain adaptation network for motor imagery classification","volume":"29","author":"Hong","year":"2021","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"key":"10.1016\/j.neunet.2024.106497_b17","doi-asserted-by":"crossref","DOI":"10.1155\/2018\/6323414","article-title":"Multiclass informative instance transfer learning framework for motor imagery-based brain-computer interface","volume":"2018","author":"Hossain","year":"2018","journal-title":"Computational Intelligence and Neuroscience"},{"key":"10.1016\/j.neunet.2024.106497_b18","doi-asserted-by":"crossref","DOI":"10.3389\/fnins.2023.1204385","article-title":"An improved model using convolutional sliding window-attention network for motor imagery EEG classification","volume":"17","author":"Huang","year":"2023","journal-title":"Frontiers in Neuroscience"},{"year":"2023","series-title":"A dynamic domain adaptation deep learning network for EEG-based motor imagery classification","author":"Jiao","key":"10.1016\/j.neunet.2024.106497_b19"},{"issue":"8","key":"10.1016\/j.neunet.2024.106497_b20","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1109\/LSP.2009.2022557","article-title":"Composite common spatial pattern for subject-to-subject transfer","volume":"16","author":"Kang","year":"2009","journal-title":"IEEE Signal Processing Letters"},{"key":"10.1016\/j.neunet.2024.106497_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105288","article-title":"A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals","volume":"143","author":"Khademi","year":"2022","journal-title":"Computers in Biology and Medicine"},{"issue":"5","key":"10.1016\/j.neunet.2024.106497_b22","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aace8c","article-title":"EEGNet: a compact convolutional neural network for EEG-based brain\u2013computer interfaces","volume":"15","author":"Lawhern","year":"2018","journal-title":"Journal of Neural Engineering"},{"issue":"5","key":"10.1016\/j.neunet.2024.106497_b23","doi-asserted-by":"crossref","first-page":"giz002","DOI":"10.1093\/gigascience\/giz002","article-title":"EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy","volume":"8","author":"Lee","year":"2019","journal-title":"GigaScience"},{"issue":"9","key":"10.1016\/j.neunet.2024.106497_b24","doi-asserted-by":"crossref","first-page":"1541","DOI":"10.1109\/TBME.2005.851521","article-title":"Spatio-spectral filters for improving the classification of single trial EEG","volume":"52","author":"Lemm","year":"2005","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"9","key":"10.1016\/j.neunet.2024.106497_b25","doi-asserted-by":"crossref","first-page":"1588","DOI":"10.3390\/math10091588","article-title":"A domain adaptation-based method for classification of motor imagery EEG","volume":"10","author":"Li","year":"2022","journal-title":"Mathematics"},{"key":"10.1016\/j.neunet.2024.106497_b26","doi-asserted-by":"crossref","first-page":"1534","DOI":"10.1109\/TNSRE.2021.3099908","article-title":"A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding","volume":"29","author":"Li","year":"2021","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"key":"10.1016\/j.neunet.2024.106497_b27","article-title":"MI-DABAN: A dual-attention-based adversarial network for motor imagery classification","author":"Li","year":"2022","journal-title":"Computers in Biology and Medicine"},{"key":"10.1016\/j.neunet.2024.106497_b28","doi-asserted-by":"crossref","first-page":"540","DOI":"10.1109\/TNSRE.2022.3156076","article-title":"SincNet-based hybrid neural network for motor imagery EEG decoding","volume":"30","author":"Liu","year":"2022","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"key":"10.1016\/j.neunet.2024.106497_b29","doi-asserted-by":"crossref","unstructured":"Long, Mingsheng, Wang, Jianmin, Ding, Guiguang, Sun, Jiaguang, & Yu, Philip S. (2013). Transfer feature learning with joint distribution adaptation. In Proceedings of the IEEE international conference on computer vision (pp. 2200\u20132207).","DOI":"10.1109\/ICCV.2013.274"},{"key":"10.1016\/j.neunet.2024.106497_b30","series-title":"International conference on machine learning","first-page":"2208","article-title":"Deep transfer learning with joint adaptation networks","author":"Long","year":"2017"},{"key":"10.1016\/j.neunet.2024.106497_b31","doi-asserted-by":"crossref","DOI":"10.1109\/TNSRE.2023.3299355","article-title":"A temporal dependency learning CNN with attention mechanism for MI-EEG decoding","author":"Ma","year":"2023","journal-title":"IEEE Transactions on Neural Systems and Rehabilitation Engineering"},{"key":"10.1016\/j.neunet.2024.106497_b32","series-title":"2020 42nd annual international conference of the IEEE engineering in medicine & biology society","first-page":"2950","article-title":"A multi-view CNN with novel variance layer for motor imagery brain computer interface","author":"Mane","year":"2020"},{"year":"2022","series-title":"Priming cross-session motor imagery classification with a universal deep domain adaptation framework","author":"Miao","key":"10.1016\/j.neunet.2024.106497_b33"},{"issue":"21","key":"10.1016\/j.neunet.2024.106497_b34","doi-asserted-by":"crossref","first-page":"7241","DOI":"10.3390\/s21217241","article-title":"Monte Carlo dropout for uncertainty estimation and motor imagery classification","volume":"21","author":"Milan\u00e9s-Hermosilla","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.neunet.2024.106497_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101557","article-title":"Exploring uncertainty measures in deep networks for multiple sclerosis lesion detection and segmentation","volume":"59","author":"Nair","year":"2020","journal-title":"Medical Image Analysis"},{"issue":"2","key":"10.1016\/j.neunet.2024.106497_b36","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/TNN.2010.2091281","article-title":"Domain adaptation via transfer component analysis","volume":"22","author":"Pan","year":"2011","journal-title":"IEEE Transactions on Neural Networks"},{"issue":"6","key":"10.1016\/j.neunet.2024.106497_b37","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/ad0a01","article-title":"Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals","volume":"20","author":"Pan","year":"2023","journal-title":"Journal of Neural Engineering"},{"issue":"7","key":"10.1016\/j.neunet.2024.106497_b38","doi-asserted-by":"crossref","first-page":"1123","DOI":"10.1109\/5.939829","article-title":"Motor imagery and direct brain-computer communication","volume":"89","author":"Pfurtscheller","year":"2001","journal-title":"Proceedings of the IEEE"},{"key":"10.1016\/j.neunet.2024.106497_b39","doi-asserted-by":"crossref","DOI":"10.1109\/ACCESS.2022.3178100","article-title":"Deep adversarial domain adaptation with few-shot learning for motor-imagery brain-computer interface","author":"Phunruangsakao","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.neunet.2024.106497_b40","series-title":"International conference on image and signal processing","first-page":"103","article-title":"Incep-EEGNet: a convnet for motor imagery decoding","author":"Riyad","year":"2020"},{"key":"10.1016\/j.neunet.2024.106497_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.jneumeth.2020.109037","article-title":"MI-EEGNET: A novel convolutional neural network for motor imagery classification","volume":"353","author":"Riyad","year":"2021","journal-title":"Journal of Neuroscience Methods"},{"issue":"8","key":"10.1016\/j.neunet.2024.106497_b42","doi-asserted-by":"crossref","first-page":"2289","DOI":"10.1109\/TBME.2013.2253608","article-title":"Transferring subspaces between subjects in brain\u2013computer interfacing","volume":"60","author":"Samek","year":"2013","journal-title":"IEEE Transactions on Biomedical Engineering"},{"issue":"11","key":"10.1016\/j.neunet.2024.106497_b43","doi-asserted-by":"crossref","first-page":"5391","DOI":"10.1002\/hbm.23730","article-title":"Deep learning with convolutional neural networks for EEG decoding and visualization","volume":"38","author":"Schirrmeister","year":"2017","journal-title":"Human Brain Mapping"},{"key":"10.1016\/j.neunet.2024.106497_b44","series-title":"International conference on artificial neural networks","first-page":"669","article-title":"Adaptive SVM-based classification increases performance of a MEG-based brain-computer interface (BCI)","author":"Sp\u00fcler","year":"2012"},{"issue":"2","key":"10.1016\/j.neunet.2024.106497_b45","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1109\/TPAMI.2012.69","article-title":"A novel Bayesian framework for discriminative feature extraction in brain-computer interfaces","volume":"35","author":"Suk","year":"2012","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"1","key":"10.1016\/j.neunet.2024.106497_b46","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12938-018-0545-x","article-title":"Towards BCI-actuated smart wheelchair system","volume":"17","author":"Tang","year":"2018","journal-title":"Biomedical Engineering Online"},{"issue":"3","key":"10.1016\/j.neunet.2024.106497_b47","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1109\/TBME.2010.2093133","article-title":"Toward unsupervised adaptation of LDA for brain\u2013computer interfaces","volume":"58","author":"Vidaurre","year":"2010","journal-title":"IEEE Transactions on Biomedical Engineering"},{"year":"2022","series-title":"MI-BMInet: An efficient convolutional neural network for motor imagery brain\u2013machine interfaces with EEG channel selection","author":"Wang","key":"10.1016\/j.neunet.2024.106497_b48"},{"key":"10.1016\/j.neunet.2024.106497_b49","series-title":"2023 IEEE 19th international conference on automation science and engineering","first-page":"1","article-title":"Calibration-free transfer learning for EEG-based cross-subject motor imagery classification","author":"Wang","year":"2023"},{"issue":"5","key":"10.1016\/j.neunet.2024.106497_b50","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/acfe9c","article-title":"Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training","volume":"20","author":"Xie","year":"2023","journal-title":"Journal of Neural Engineering"},{"key":"10.1016\/j.neunet.2024.106497_b51","first-page":"1","article-title":"A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification","author":"Xu","year":"2022","journal-title":"Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies"},{"issue":"9","key":"10.1016\/j.neunet.2024.106497_b52","doi-asserted-by":"crossref","first-page":"10766","DOI":"10.1007\/s10489-022-04077-z","article-title":"A dual alignment-based multi-source domain adaptation framework for motor imagery EEG classification","volume":"53","author":"Xu","year":"2023","journal-title":"Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies"},{"key":"10.1016\/j.neunet.2024.106497_b53","doi-asserted-by":"crossref","unstructured":"Yan, Hongliang, Ding, Yukang, Li, Peihua, Wang, Qilong, Xu, Yong, & Zuo, Wangmeng (2017). Mind the class weight bias: Weighted maximum mean discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2272\u20132281).","DOI":"10.1109\/CVPR.2017.107"},{"key":"10.1016\/j.neunet.2024.106497_b54","doi-asserted-by":"crossref","DOI":"10.1016\/j.neunet.2023.06.005","article-title":"MI-CAT: A transformer-based domain adaptation network for motor imagery classification","author":"Zhang","year":"2023","journal-title":"Neural Networks"},{"key":"10.1016\/j.neunet.2024.106497_b55","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.neunet.2023.08.008","article-title":"MI-DAGSC: A domain adaptation approach incorporating comprehensive information from MI-EEG signals","volume":"167","author":"Zhang","year":"2023","journal-title":"Neural Networks"},{"key":"10.1016\/j.neunet.2024.106497_b56","doi-asserted-by":"crossref","DOI":"10.1155\/2020\/1683013","article-title":"Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks","volume":"2020","author":"Zhang","year":"2020","journal-title":"Computational and Mathematical Methods in Medicine"},{"key":"10.1016\/j.neunet.2024.106497_b57","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2020.102144","article-title":"Hybrid deep neural network using transfer learning for EEG motor imagery decoding","volume":"63","author":"Zhang","year":"2021","journal-title":"Biomedical Signal Processing and Control"},{"key":"10.1016\/j.neunet.2024.106497_b58","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.neunet.2019.02.009","article-title":"Learning joint space\u2013time\u2013frequency features for EEG decoding on small labeled data","volume":"114","author":"Zhao","year":"2019","journal-title":"Neural Networks"},{"issue":"2","key":"10.1016\/j.neunet.2024.106497_b59","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1109\/TNNLS.2020.3010780","article-title":"Deep representation-based domain adaptation for nonstationary EEG classification","volume":"32","author":"Zhao","year":"2020","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"3","key":"10.1016\/j.neunet.2024.106497_b60","doi-asserted-by":"crossref","first-page":"1110","DOI":"10.1109\/TCYB.2018.2797176","article-title":"Emotionmeter: A multimodal framework for recognizing human emotions","volume":"49","author":"Zheng","year":"2018","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.neunet.2024.106497_b61","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.medengphy.2021.08.006","article-title":"A deep neural network with subdomain adaptation for motor imagery brain-computer interface","volume":"96","author":"Zheng","year":"2021","journal-title":"Medical Engineering & Physics"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608024004210?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608024004210?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T16:24:46Z","timestamp":1726331086000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608024004210"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":61,"alternative-id":["S0893608024004210"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2024.106497","relation":{},"ISSN":["0893-6080"],"issn-type":[{"type":"print","value":"0893-6080"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Unsupervised and semi-supervised domain adaptation networks considering both global knowledge and prototype-based local class information for Motor Imagery Classification","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2024.106497","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"106497"}}