{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,9]],"date-time":"2024-11-09T05:06:43Z","timestamp":1731128803834,"version":"3.28.0"},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.neunet.2024.106095","type":"journal-article","created":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T08:43:24Z","timestamp":1704357804000},"page":"106095","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Understanding the role of pathways in a deep neural network"],"prefix":"10.1016","volume":"172","author":[{"given":"Lei","family":"Lyu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0002-2358-7038","authenticated-orcid":false,"given":"Chen","family":"Pang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9299-3438","authenticated-orcid":false,"given":"Jihua","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"12","key":"10.1016\/j.neunet.2024.106095_b1","doi-asserted-by":"crossref","first-page":"7842","DOI":"10.1109\/TNNLS.2021.3088685","article-title":"Understanding neural networks and individual neuron importance via information-ordered cumulative ablation","volume":"33","author":"Amjad","year":"2021","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"23","key":"10.1016\/j.neunet.2024.106095_b2","doi-asserted-by":"crossref","first-page":"4693","DOI":"10.1523\/JNEUROSCI.2257-21.2022","article-title":"The dorsal visual pathway represents object-centered spatial relations for object recognition","volume":"42","author":"Ayzenberg","year":"2022","journal-title":"Journal of Neuroscience"},{"issue":"48","key":"10.1016\/j.neunet.2024.106095_b3","doi-asserted-by":"crossref","first-page":"30071","DOI":"10.1073\/pnas.1907375117","article-title":"Understanding the role of individual units in a deep neural network","volume":"117","author":"Bau","year":"2020","journal-title":"Proceedings of the National Academy of Sciences"},{"issue":"19","key":"10.1016\/j.neunet.2024.106095_b4","doi-asserted-by":"crossref","first-page":"10530","DOI":"10.1073\/pnas.1921609117","article-title":"Understanding the computation of time using neural network models","volume":"117","author":"Bi","year":"2020","journal-title":"Proceedings of the National Academy of Sciences"},{"journal-title":"Mathematics and Computers in Simulation","article-title":"Input-to-state stability of stochastic Markovian jump genetic regulatory networks","year":"2023","author":"Cao","key":"10.1016\/j.neunet.2024.106095_b5"},{"issue":"7","key":"10.1016\/j.neunet.2024.106095_b6","doi-asserted-by":"crossref","first-page":"3289","DOI":"10.1109\/TVCG.2020.2969185","article-title":"Analyzing the noise robustness of deep neural networks","volume":"27","author":"Cao","year":"2020","journal-title":"IEEE Transactions on Visualization and Computer Graphics"},{"key":"10.1016\/j.neunet.2024.106095_b7","first-page":"1","article-title":"Further results on input-to-state stability of stochastic Cohen\u2013Grossberg BAM neural networks with probabilistic time-varying delays","author":"Chandrasekar","year":"2022","journal-title":"Neural Processing Letters"},{"key":"10.1016\/j.neunet.2024.106095_b8","first-page":"1","article-title":"State estimation for genetic regulatory networks with two delay components by using second-order reciprocally convex approach","author":"Chandrasekar","year":"2022","journal-title":"Neural Processing Letters"},{"year":"2017","series-title":"M2NIST","author":"Farhanhubble","key":"10.1016\/j.neunet.2024.106095_b9"},{"key":"10.1016\/j.neunet.2024.106095_b10","doi-asserted-by":"crossref","DOI":"10.7554\/eLife.25784","article-title":"Dynamic representation of partially occluded objects in primate prefrontal and visual cortex","volume":"6","author":"Fyall","year":"2017","journal-title":"Elife"},{"article-title":"Explaining and harnessing adversarial examples","year":"2015","series-title":"3rd International conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, conference track proceedings","author":"Goodfellow","key":"10.1016\/j.neunet.2024.106095_b11"},{"issue":"7623","key":"10.1016\/j.neunet.2024.106095_b12","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1038\/nature19766","article-title":"Autocrine BDNF\u2013TrkB signalling within a single dendritic spine","volume":"538","author":"Harward","year":"2016","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.neunet.2024.106095_b13","doi-asserted-by":"crossref","first-page":"1096","DOI":"10.1109\/TVCG.2019.2934659","article-title":"Summit: Scaling deep learning interpretability by visualizing activation and attribution summarizations","volume":"26","author":"Hohman","year":"2020","journal-title":"IEEE Transactions on Visualization and Computer Graphics"},{"key":"10.1016\/j.neunet.2024.106095_b14","doi-asserted-by":"crossref","unstructured":"Khakzar, Ashkan, Baselizadeh, Soroosh, Khanduja, Saurabh, Rupprecht, Christian, Kim, Seong Tae, & Navab, Nassir (2021). Neural response interpretation through the lens of critical pathways. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 13528\u201313538).","DOI":"10.1109\/CVPR46437.2021.01332"},{"key":"10.1016\/j.neunet.2024.106095_b15","first-page":"9389","article-title":"Characterizing the ventral visual stream with response-optimized neural encoding models","volume":"35","author":"Khosla","year":"2022","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"43","key":"10.1016\/j.neunet.2024.106095_b16","doi-asserted-by":"crossref","first-page":"21854","DOI":"10.1073\/pnas.1905544116","article-title":"Recurrence is required to capture the representational dynamics of the human visual system","volume":"116","author":"Kietzmann","year":"2019","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"10.1016\/j.neunet.2024.106095_b17","series-title":"International conference on machine learning","first-page":"2668","article-title":"Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)","author":"Kim","year":"2018"},{"key":"10.1016\/j.neunet.2024.106095_b18","doi-asserted-by":"crossref","first-page":"736","DOI":"10.1007\/s11263-020-01401-3","article-title":"Compositional convolutional neural networks: A robust and interpretable model for object recognition under occlusion","volume":"129","author":"Kortylewski","year":"2021","journal-title":"International Journal of Computer Vision"},{"year":"2009","series-title":"Learning multiple layers of features from tiny images","author":"Krizhevsky","key":"10.1016\/j.neunet.2024.106095_b19"},{"issue":"12","key":"10.1016\/j.neunet.2024.106095_b20","doi-asserted-by":"crossref","first-page":"E2494","DOI":"10.1073\/pnas.1619949114","article-title":"Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles","volume":"114","author":"Leavitt","year":"2017","journal-title":"Proceedings of the National Academy of Sciences"},{"issue":"11","key":"10.1016\/j.neunet.2024.106095_b21","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"LeCun","year":"1998","journal-title":"Proceedings of the IEEE"},{"key":"10.1016\/j.neunet.2024.106095_b22","series-title":"Computer vision\u2013ECCV 2020: 16th European conference, Glasgow, UK, August 23\u201328, 2020, proceedings, Part II 16","first-page":"622","article-title":"Training interpretable convolutional neural networks by differentiating class-specific filters","author":"Liang","year":"2020"},{"year":"2018","series-title":"Rise: Randomized input sampling for explanation of black-box models","author":"Petsiuk","key":"10.1016\/j.neunet.2024.106095_b23"},{"key":"10.1016\/j.neunet.2024.106095_b24","first-page":"1","article-title":"Analysis of Markovian jump stochastic Cohen\u2013Grossberg BAM neural networks with time delays for exponential input-to-state stability","author":"Radhika","year":"2023","journal-title":"Neural Processing Letters"},{"issue":"9","key":"10.1016\/j.neunet.2024.106095_b25","doi-asserted-by":"crossref","first-page":"2043","DOI":"10.1109\/TNNLS.2014.2365059","article-title":"Passivity and passification of memristor-based recurrent neural networks with additive time-varying delays","volume":"26","author":"Rakkiyappan","year":"2014","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neunet.2024.106095_b26","doi-asserted-by":"crossref","unstructured":"Ribeiro, Marco Tulio, Singh, Sameer, & Guestrin, Carlos (2016). \u201c Why should i trust you?\u201d Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135\u20131144).","DOI":"10.1145\/2939672.2939778"},{"journal-title":"bioRxiv","article-title":"Brain dissection: fMRI-trained networks reveal spatial selectivity in the processing of natural images","year":"2023","author":"Sarch","key":"10.1016\/j.neunet.2024.106095_b27"},{"key":"10.1016\/j.neunet.2024.106095_b28","doi-asserted-by":"crossref","unstructured":"Selvaraju, Ramprasaath R, Cogswell, Michael, Das, Abhishek, Vedantam, Ramakrishna, Parikh, Devi, & Batra, Dhruv (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618\u2013626).","DOI":"10.1109\/ICCV.2017.74"},{"journal-title":"ICLR","article-title":"Very deep convolutional networks for large-scale image recognition","year":"2015","author":"Simonyan","key":"10.1016\/j.neunet.2024.106095_b29"},{"key":"10.1016\/j.neunet.2024.106095_b30","series-title":"International conference on machine learning","first-page":"3319","article-title":"Axiomatic attribution for deep networks","author":"Sundararajan","year":"2017"},{"issue":"35","key":"10.1016\/j.neunet.2024.106095_b31","doi-asserted-by":"crossref","first-page":"8835","DOI":"10.1073\/pnas.1719397115","article-title":"Recurrent computations for visual pattern completion","volume":"115","author":"Tang","year":"2018","journal-title":"Proceedings of the National Academy of Sciences"},{"journal-title":"BioRxiv","article-title":"Incorporating natural language into vision models improves prediction and understanding of higher visual cortex","year":"2022","author":"Wang","key":"10.1016\/j.neunet.2024.106095_b32"},{"key":"10.1016\/j.neunet.2024.106095_b33","doi-asserted-by":"crossref","unstructured":"Wang, Yulong, Su, Hang, Zhang, Bo, & Hu, Xiaolin (2018). Interpret neural networks by identifying critical data routing paths. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8906\u20138914).","DOI":"10.1109\/CVPR.2018.00928"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608024000017?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608024000017?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T07:55:45Z","timestamp":1731052545000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608024000017"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":33,"alternative-id":["S0893608024000017"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2024.106095","relation":{},"ISSN":["0893-6080"],"issn-type":[{"type":"print","value":"0893-6080"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Understanding the role of pathways in a deep neural network","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2024.106095","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106095"}}