{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T19:33:00Z","timestamp":1744313580506,"version":"3.37.3"},"reference-count":58,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2020AAA0107100"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62076228"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007129","name":"Natural Science Foundation of Shandong Province","doi-asserted-by":"publisher","award":["ZR2021LZH001"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.neunet.2022.06.016","type":"journal-article","created":{"date-parts":[[2022,6,16]],"date-time":"2022-06-16T17:34:26Z","timestamp":1655400866000},"page":"292-302","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":29,"special_numbering":"C","title":["Graph regularized spatial\u2013spectral subspace clustering for hyperspectral band selection"],"prefix":"10.1016","volume":"153","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-5838-9846","authenticated-orcid":false,"given":"Jun","family":"Wang","sequence":"first","affiliation":[]},{"given":"Chang","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Xiao","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Xinwang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"En","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.neunet.2022.06.016_b1","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1109\/JSTARS.2019.2899157","article-title":"Semi-supervised hyperspectral band selection based on dynamic classifier selection","volume":"12","author":"Cao","year":"2019","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"issue":"6","key":"10.1016\/j.neunet.2022.06.016_b2","doi-asserted-by":"crossref","first-page":"2631","DOI":"10.1109\/36.803411","article-title":"A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification","volume":"37","author":"Chang","year":"1999","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"6","key":"10.1016\/j.neunet.2022.06.016_b3","doi-asserted-by":"crossref","first-page":"2814","DOI":"10.1109\/JSTARS.2015.2428276","article-title":"Combination of clustering and ranking techniques for unsupervised band selection of hyperspectral images","volume":"8","author":"Datta","year":"2015","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.neunet.2022.06.016_b4","series-title":"IEEE workshop on advances in techniques for analysis of remotely sensed data, 2003","first-page":"374","article-title":"Band selection and its impact on target detection and classification in hyperspectral image analysis","author":"Du","year":"2003"},{"issue":"4","key":"10.1016\/j.neunet.2022.06.016_b5","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1109\/LGRS.2008.2000619","article-title":"Similarity-based unsupervised band selection for hyperspectral image analysis","volume":"5","author":"Du","year":"2008","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"5","key":"10.1016\/j.neunet.2022.06.016_b6","doi-asserted-by":"crossref","first-page":"2956","DOI":"10.1109\/TGRS.2014.2367022","article-title":"Mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy","volume":"53","author":"Feng","year":"2014","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.neunet.2022.06.016_b7","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1016\/j.ins.2021.06.059","article-title":"Semi-supervised rotation forest based on ensemble margin theory for the classification of hyperspectral image with limited training data","volume":"575","author":"Feng","year":"2021","journal-title":"Information Sciences"},{"issue":"2","key":"10.1016\/j.neunet.2022.06.016_b8","doi-asserted-by":"crossref","first-page":"182","DOI":"10.3390\/min11020182","article-title":"UAS-based hyperspectral environmental monitoring of acid mine drainage affected waters","volume":"11","author":"Flores","year":"2021","journal-title":"Minerals"},{"key":"10.1016\/j.neunet.2022.06.016_b9","series-title":"2005 7th international conference on information fusion, Vol. 1","first-page":"8","article-title":"Adaptive band selection for hyperspectral image fusion using mutual information","author":"Guo","year":"2005"},{"key":"10.1016\/j.neunet.2022.06.016_b10","first-page":"1","article-title":"A structural subspace clustering approach for hyperspectral band selection","volume":"60","author":"Huang","year":"2021","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.neunet.2022.06.016_b11","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.ins.2016.01.032","article-title":"Binary coding based feature extraction in remote sensing high dimensional data","volume":"342","author":"Imani","year":"2016","journal-title":"Information Sciences"},{"issue":"1","key":"10.1016\/j.neunet.2022.06.016_b12","doi-asserted-by":"crossref","first-page":"88","DOI":"10.3390\/rs9010088","article-title":"The need for accurate geometric and radiometric corrections of drone-borne hyperspectral data for mineral exploration: Mephysto\u2014A toolbox for pre-processing drone-borne hyperspectral data","volume":"9","author":"Jakob","year":"2017","journal-title":"Remote Sensing"},{"issue":"1","key":"10.1016\/j.neunet.2022.06.016_b13","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1109\/TGRS.2015.2450759","article-title":"A novel ranking-based clustering approach for hyperspectral band selection","volume":"54","author":"Jia","year":"2015","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"1","key":"10.1016\/j.neunet.2022.06.016_b14","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1109\/TGRS.2015.2450759","article-title":"A novel ranking-based clustering approach for hyperspectral band selection","volume":"54","author":"Jia","year":"2016","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"2","key":"10.1016\/j.neunet.2022.06.016_b15","doi-asserted-by":"crossref","first-page":"851","DOI":"10.1109\/TGRS.2018.2861992","article-title":"Hyperspectral image classification in the presence of noisy labels","volume":"57","author":"Jiang","year":"2018","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"10","key":"10.1016\/j.neunet.2022.06.016_b16","doi-asserted-by":"crossref","first-page":"969","DOI":"10.1080\/2150704X.2013.822119","article-title":"Spectral similarity-preserving hyperspectral band selection","volume":"4","author":"Li","year":"2013","journal-title":"Remote Sensing Letters"},{"key":"10.1016\/j.neunet.2022.06.016_b17","series-title":"CVPR 2011","first-page":"2097","article-title":"Entropy rate superpixel segmentation","author":"Liu","year":"2011"},{"issue":"2","key":"10.1016\/j.neunet.2022.06.016_b18","first-page":"381","article-title":"Hyperspectral band selection based on deep adversarial subspace clustering","volume":"40","author":"Meng","year":"2020","journal-title":"Journal of Computer Applications"},{"key":"10.1016\/j.neunet.2022.06.016_b19","doi-asserted-by":"crossref","first-page":"885","DOI":"10.1016\/j.proenv.2013.06.098","article-title":"Hyperspectral image analysis in environmental monitoring: setup of a new tunable filter platform","volume":"19","author":"Moroni","year":"2013","journal-title":"Procedia Environmental Sciences"},{"key":"10.1016\/j.neunet.2022.06.016_b20","doi-asserted-by":"crossref","unstructured":"Nie, Feiping, Wang, Xiaoqian, & Huang, Heng (2014). Clustering and projected clustering with adaptive neighbors. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 977\u2013986).","DOI":"10.1145\/2623330.2623726"},{"issue":"3","key":"10.1016\/j.neunet.2022.06.016_b21","first-page":"1210","article-title":"Structured graph optimization for unsupervised feature selection","volume":"33","author":"Nie","year":"2019","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"3","key":"10.1016\/j.neunet.2022.06.016_b22","doi-asserted-by":"crossref","DOI":"10.1117\/1.JRS.15.031501","article-title":"Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review","volume":"15","author":"Peyghambari","year":"2021","journal-title":"Journal of Applied Remote Sensing"},{"issue":"12","key":"10.1016\/j.neunet.2022.06.016_b23","doi-asserted-by":"crossref","first-page":"6976","DOI":"10.1109\/TGRS.2016.2593463","article-title":"Hyperspectral feature extraction using total variation component analysis","volume":"54","author":"Rasti","year":"2016","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.neunet.2022.06.016_b24","series-title":"2016 24th signal processing and communication application conference (SIU)","first-page":"1281","article-title":"Mineral exploration with hyperspectral image fusion","author":"Saral\u0131o\u011flu","year":"2016"},{"issue":"13","key":"10.1016\/j.neunet.2022.06.016_b25","doi-asserted-by":"crossref","first-page":"4589","DOI":"10.1080\/2150704X.2014.930196","article-title":"A band selection approach for small target detection based on CEM","volume":"35","author":"Sun","year":"2014","journal-title":"International Journal of Remote Sensing"},{"issue":"6","key":"10.1016\/j.neunet.2022.06.016_b26","doi-asserted-by":"crossref","first-page":"3906","DOI":"10.1109\/TGRS.2019.2959342","article-title":"Fast and latent low-rank subspace clustering for hyperspectral band selection","volume":"58","author":"Sun","year":"2020","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"6","key":"10.1016\/j.neunet.2022.06.016_b27","doi-asserted-by":"crossref","first-page":"2784","DOI":"10.1109\/JSTARS.2015.2417156","article-title":"Band selection using improved sparse subspace clustering for hyperspectral imagery classification","volume":"8","author":"Sun","year":"2015","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"issue":"9","key":"10.1016\/j.neunet.2022.06.016_b28","doi-asserted-by":"crossref","first-page":"4374","DOI":"10.1109\/JSTARS.2016.2539981","article-title":"A dissimilarity-weighted sparse self-representation method for band selection in hyperspectral imagery classification","volume":"9","author":"Sun","year":"2016","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"key":"10.1016\/j.neunet.2022.06.016_b29","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.knosys.2018.01.009","article-title":"Robust unsupervised feature selection via dual self-representation and manifold regularization","volume":"145","author":"Tang","year":"2018","journal-title":"Knowledge-Based Systems"},{"key":"10.1016\/j.neunet.2022.06.016_b30","doi-asserted-by":"crossref","unstructured":"Tang, Chang, Liu, Xinwang, Zhu, En, Wang, Lizhe, & Zomaya, Albert (2021). Hyperspectral band selection via spatial-spectral weighted region-wise multiple graph fusion-based spectral clustering. In Proceedings of the thirtieth international joint conference on artificial intelligence organization, Montreal, QC, Canada (pp. 19\u201327).","DOI":"10.24963\/ijcai.2021\/418"},{"issue":"9","key":"10.1016\/j.neunet.2022.06.016_b31","first-page":"1747","article-title":"Feature selective projection with low-rank embedding and dual Laplacian regularization","volume":"32","author":"Tang","year":"2020","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.neunet.2022.06.016_b32","article-title":"Cross-view locality preserved diversity and consensus learning for multi-view unsupervised feature selection","author":"Tang","year":"2021","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"7","key":"10.1016\/j.neunet.2022.06.016_b33","doi-asserted-by":"crossref","first-page":"1724","DOI":"10.1109\/TMM.2018.2889560","article-title":"Learning a joint affinity graph for multiview subspace clustering","volume":"21","author":"Tang","year":"2019","journal-title":"IEEE Transactions on Multimedia"},{"key":"10.1016\/j.neunet.2022.06.016_b34","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/j.inffus.2019.02.005","article-title":"MIMR-DGSA: Unsupervised hyperspectral band selection based on information theory and a modified discrete gravitational search algorithm","volume":"51","author":"Tschannerl","year":"2019","journal-title":"Information Fusion"},{"issue":"12","key":"10.1016\/j.neunet.2022.06.016_b35","doi-asserted-by":"crossref","first-page":"4940","DOI":"10.1109\/JSTARS.2019.2941454","article-title":"Hyperspectral band selection via adaptive subspace partition strategy","volume":"12","author":"Wang","year":"2019","journal-title":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing"},{"issue":"6","key":"10.1016\/j.neunet.2022.06.016_b36","doi-asserted-by":"crossref","first-page":"5028","DOI":"10.1109\/TGRS.2020.3011002","article-title":"A fast neighborhood grouping method for hyperspectral band selection","volume":"59","author":"Wang","year":"2020","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.neunet.2022.06.016_b37","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1016\/j.inffus.2021.09.019","article-title":"Hyperspectral band selection via region-aware latent features fusion based clustering","volume":"79","author":"Wang","year":"2022","journal-title":"Information Fusion"},{"issue":"10","key":"10.1016\/j.neunet.2022.06.016_b38","first-page":"5910","article-title":"Optimal clustering framework for hyperspectral band selection","volume":"56","author":"Wang","year":"2018","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"12","key":"10.1016\/j.neunet.2022.06.016_b39","doi-asserted-by":"crossref","first-page":"8465","DOI":"10.1109\/TGRS.2020.2987955","article-title":"Hyperspectral band selection via optimal neighborhood reconstruction","volume":"58","author":"Wang","year":"2020","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"3","key":"10.1016\/j.neunet.2022.06.016_b40","doi-asserted-by":"crossref","first-page":"2015","DOI":"10.1109\/TGRS.2019.2952091","article-title":"Deep latent spectral representation learning-based hyperspectral band selection for target detection","volume":"58","author":"Xie","year":"2019","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"11","key":"10.1016\/j.neunet.2022.06.016_b41","doi-asserted-by":"crossref","first-page":"9585","DOI":"10.1109\/TGRS.2020.3048138","article-title":"A similarity-based ranking method for hyperspectral band selection","volume":"59","author":"Xu","year":"2021","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"1","key":"10.1016\/j.neunet.2022.06.016_b42","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1109\/TNNLS.2019.2899936","article-title":"Scalable digital neuromorphic architecture for large-scale biophysically meaningful neural network with multi-compartment neurons","volume":"31","author":"Yang","year":"2019","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"1","key":"10.1016\/j.neunet.2022.06.016_b43","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1109\/LGRS.2010.2053516","article-title":"An efficient method for supervised hyperspectral band selection","volume":"8","author":"Yang","year":"2010","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"key":"10.1016\/j.neunet.2022.06.016_b44","unstructured":"Yang, Shuangming, Gao, Tian, Wang, Jiang, Deng, Bin, Azghadi, Mostafa\u00a0Rahimi, & Lei, Tao, et al. (0000). SAM: A unified self-adaptive multicompartmental spiking neuron model for learning with working memory. Frontiers in Neuroscience, 467."},{"issue":"4","key":"10.1016\/j.neunet.2022.06.016_b45","doi-asserted-by":"crossref","first-page":"455","DOI":"10.3390\/e24040455","article-title":"Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion","volume":"24","author":"Yang","year":"2022","journal-title":"Entropy"},{"key":"10.1016\/j.neunet.2022.06.016_b46","article-title":"Neuromorphic context-dependent learning framework with fault-tolerant spike routing","author":"Yang","year":"2021","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neunet.2022.06.016_b47","series-title":"International conference in communications, signal processing, and systems","first-page":"1053","article-title":"Unsupervised hyperspectral band selection method based on low-rank representation","author":"Yu","year":"2018"},{"issue":"1","key":"10.1016\/j.neunet.2022.06.016_b48","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1109\/TIP.2016.2617462","article-title":"Discovering diverse subset for unsupervised hyperspectral band selection","volume":"26","author":"Yuan","year":"2016","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neunet.2022.06.016_b49","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2015.11.044","article-title":"Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging","volume":"185","author":"Zabalza","year":"2016","journal-title":"Neurocomputing"},{"issue":"12","key":"10.1016\/j.neunet.2022.06.016_b50","doi-asserted-by":"crossref","first-page":"1889","DOI":"10.1109\/LGRS.2019.2912170","article-title":"Unsupervised hyperspectral image band selection based on deep subspace clustering","volume":"16","author":"Zeng","year":"2019","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"3","key":"10.1016\/j.neunet.2022.06.016_b51","doi-asserted-by":"crossref","first-page":"1723","DOI":"10.1109\/TGRS.2018.2868796","article-title":"Laplacian-regularized low-rank subspace clustering for hyperspectral image band selection","volume":"57","author":"Zhai","year":"2018","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"key":"10.1016\/j.neunet.2022.06.016_b52","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1016\/j.neucom.2019.01.077","article-title":"A nonlinear and explicit framework of supervised manifold-feature extraction for hyperspectral image classification","volume":"337","author":"Zhang","year":"2019","journal-title":"Neurocomputing"},{"issue":"8","key":"10.1016\/j.neunet.2022.06.016_b53","doi-asserted-by":"crossref","first-page":"4318","DOI":"10.1109\/TGRS.2018.2811046","article-title":"A geometry-based band selection approach for hyperspectral image analysis","volume":"56","author":"Zhang","year":"2018","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"2","key":"10.1016\/j.neunet.2022.06.016_b54","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1049\/iet-ipr.2018.5362","article-title":"Hyperspectral band selection using crossover-based gravitational search algorithm","volume":"13","author":"Zhang","year":"2019","journal-title":"IET Image Processing"},{"key":"10.1016\/j.neunet.2022.06.016_b55","article-title":"Marginalized graph self-representation for unsupervised hyperspectral band selection","author":"Zhang","year":"2021","journal-title":"IEEE Transactions on Geoscience and Remote Sensing"},{"issue":"12","key":"10.1016\/j.neunet.2022.06.016_b56","doi-asserted-by":"crossref","first-page":"2320","DOI":"10.1109\/LGRS.2017.2763183","article-title":"Hyperspectral band selection via rank minimization","volume":"14","author":"Zhu","year":"2017","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"key":"10.1016\/j.neunet.2022.06.016_b57","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1016\/j.ins.2014.11.045","article-title":"Three-dimensional gabor feature extraction for hyperspectral imagery classification using a memetic framework","volume":"298","author":"Zhu","year":"2015","journal-title":"Information Sciences"},{"issue":"2","key":"10.1016\/j.neunet.2022.06.016_b58","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1016\/j.patcog.2014.08.006","article-title":"Unsupervised feature selection by regularized self-representation","volume":"48","author":"Zhu","year":"2015","journal-title":"Pattern Recognition"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608022002313?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608022002313?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,22]],"date-time":"2024-04-22T13:51:18Z","timestamp":1713793878000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608022002313"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":58,"alternative-id":["S0893608022002313"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2022.06.016","relation":{},"ISSN":["0893-6080"],"issn-type":[{"type":"print","value":"0893-6080"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Graph regularized spatial\u2013spectral subspace clustering for hyperspectral band selection","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2022.06.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}