{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T14:56:37Z","timestamp":1725807397814},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1016\/j.neunet.2021.09.014","type":"journal-article","created":{"date-parts":[[2021,9,28]],"date-time":"2021-09-28T13:16:51Z","timestamp":1632835011000},"page":"726-736","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["ARAE: Adversarially robust training of autoencoders improves novelty detection"],"prefix":"10.1016","volume":"144","author":[{"given":"Mohammadreza","family":"Salehi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5037-695X","authenticated-orcid":false,"given":"Atrin","family":"Arya","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0948-7818","authenticated-orcid":false,"given":"Barbod","family":"Pajoum","sequence":"additional","affiliation":[]},{"given":"Mohammad","family":"Otoofi","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2715-7652","authenticated-orcid":false,"given":"Amirreza","family":"Shaeiri","sequence":"additional","affiliation":[]},{"given":"Mohammad Hossein","family":"Rohban","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9835-4493","authenticated-orcid":false,"given":"Hamid R.","family":"Rabiee","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neunet.2021.09.014_b1","doi-asserted-by":"crossref","unstructured":"Abati, D., Porrello, A., Calderara, S., & Cucchiara, R. (2019). Latent space autoregression for novelty detection. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 481\u2013490).","DOI":"10.1109\/CVPR.2019.00057"},{"key":"10.1016\/j.neunet.2021.09.014_b2","series-title":"Asian conference on computer vision","first-page":"622","article-title":"Ganomaly: Semi-supervised anomaly detection via adversarial training","author":"Akcay","year":"2018"},{"key":"10.1016\/j.neunet.2021.09.014_b3","series-title":"Towards better understanding of gradient-based attribution methods for deep neural networks","author":"Ancona","year":"2017"},{"key":"10.1016\/j.neunet.2021.09.014_b4","series-title":"International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), Vol. 5","first-page":"372","article-title":"Improving unsupervised defect segmentation by applying structural similarity to autoencoders","author":"Bergmann","year":"2019"},{"issue":"10","key":"10.1016\/j.neunet.2021.09.014_b5","doi-asserted-by":"crossref","DOI":"10.1007\/JHEP10(2019)047","article-title":"Adversarially-trained autoencoders for robust unsupervised new physics searches","volume":"2019","author":"Blance","year":"2019","journal-title":"Journal of High Energy Physics"},{"key":"10.1016\/j.neunet.2021.09.014_b6","doi-asserted-by":"crossref","unstructured":"Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. In Proceedings of the 2000 acm sigmod international conference on management of data (pp. 93\u2013104).","DOI":"10.1145\/342009.335388"},{"key":"10.1016\/j.neunet.2021.09.014_b7","series-title":"Brain mri images for brain tumor detection","author":"Chakrabarty","year":"2019"},{"key":"10.1016\/j.neunet.2021.09.014_b8","series-title":"Deep learning for anomaly detection: A survey","author":"Chalapathy","year":"2019"},{"key":"10.1016\/j.neunet.2021.09.014_b9","series-title":"Proceedings 2001 international conference on image processing (cat. no. 01ch37205), Vol. 1","first-page":"34","article-title":"One-class SVM for learning in image retrieval","author":"Chen","year":"2001"},{"key":"10.1016\/j.neunet.2021.09.014_b10","series-title":"Keras","author":"Chollet","year":"2015"},{"key":"10.1016\/j.neunet.2021.09.014_b11","series-title":"Adversarial robustness as a prior for learned representations","author":"Engstrom","year":"2019"},{"key":"10.1016\/j.neunet.2021.09.014_b12","series-title":"Exploring the landscape of spatial robustness","author":"Engstrom","year":"2017"},{"key":"10.1016\/j.neunet.2021.09.014_b13","doi-asserted-by":"crossref","unstructured":"Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R., & Venkatesh, S., et al. (2019). Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the ieee international conference on computer vision (pp. 1705\u20131714).","DOI":"10.1109\/ICCV.2019.00179"},{"key":"10.1016\/j.neunet.2021.09.014_b14","series-title":"Nips 2016 tutorial: Generative adversarial networks","author":"Goodfellow","year":"2016"},{"key":"10.1016\/j.neunet.2021.09.014_b15","doi-asserted-by":"crossref","unstructured":"Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K., & Davis, L. S. (2016). Learning temporal regularity in video sequences. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 733\u2013742).","DOI":"10.1109\/CVPR.2016.86"},{"key":"10.1016\/j.neunet.2021.09.014_b16","series-title":"Identification of outliers, Vol. 11","author":"Hawkins","year":"1980"},{"key":"10.1016\/j.neunet.2021.09.014_b17","series-title":"Advances in neural information processing systems","first-page":"125","article-title":"Adversarial examples are not bugs, they are features","author":"Ilyas","year":"2019"},{"key":"10.1016\/j.neunet.2021.09.014_b18","series-title":"Are perceptually-aligned gradients a general property of robust classifiers?","author":"Kaur","year":"2019"},{"key":"10.1016\/j.neunet.2021.09.014_b19","series-title":"Auto-encoding variational bayes","author":"Kingma","year":"2013"},{"key":"10.1016\/j.neunet.2021.09.014_b20","series-title":"Head ct - hemorrhage","author":"Kitamura","year":"2018"},{"key":"10.1016\/j.neunet.2021.09.014_b21","series-title":"On convergence and stability of gans","author":"Kodali","year":"2017"},{"key":"10.1016\/j.neunet.2021.09.014_b22","series-title":"Learning multiple layers of features from tiny images","author":"Krizhevsky","year":"2009"},{"key":"10.1016\/j.neunet.2021.09.014_b23","series-title":"Autoencoding beyond pixels using a learned similarity metric","author":"Larsen","year":"2015"},{"key":"10.1016\/j.neunet.2021.09.014_b24","series-title":"Mnist handwritten digit database","author":"LeCun","year":"2010"},{"key":"10.1016\/j.neunet.2021.09.014_b25","series-title":"Towards deep learning models resistant to adversarial attacks","author":"Madry","year":"2017"},{"key":"10.1016\/j.neunet.2021.09.014_b26","series-title":"Adversarial autoencoders","author":"Makhzani","year":"2016"},{"key":"10.1016\/j.neunet.2021.09.014_b27","series-title":"Image restoration using convolutional auto-encoders with symmetric skip connections","author":"Mao","year":"2016"},{"key":"10.1016\/j.neunet.2021.09.014_b28","series-title":"Nips 2016 workshop on adversarial training. in review for iclr, Vol. 2016","article-title":"Towards principled methods for training generative adversarial networks","author":"Martin","year":"2017"},{"key":"10.1016\/j.neunet.2021.09.014_b29","series-title":"Object image library (COIL-100)","author":"Nene","year":"1996"},{"key":"10.1016\/j.neunet.2021.09.014_b30","doi-asserted-by":"crossref","unstructured":"Perera, P., Nallapati, R., & Xiang, B. (2019). Ocgan: One-class novelty detection using gans with constrained latent representations. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 2898\u20132906).","DOI":"10.1109\/CVPR.2019.00301"},{"key":"10.1016\/j.neunet.2021.09.014_b31","series-title":"Advances in neural information processing systems","first-page":"6822","article-title":"Generative probabilistic novelty detection with adversarial autoencoders","author":"Pidhorskyi","year":"2018"},{"key":"10.1016\/j.neunet.2021.09.014_b32","series-title":"International conference on machine learning","first-page":"4393","article-title":"Deep one-class classification","author":"Ruff","year":"2018"},{"key":"10.1016\/j.neunet.2021.09.014_b33","doi-asserted-by":"crossref","unstructured":"Sabokrou, M., Khalooei, M., Fathy, M., & Adeli, E. (2018). Adversarially learned one-class classifier for novelty detection. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 3379\u20133388).","DOI":"10.1109\/CVPR.2018.00356"},{"key":"10.1016\/j.neunet.2021.09.014_b34","series-title":"Advances in neural information processing systems","first-page":"2234","article-title":"Improved techniques for training gans","author":"Salimans","year":"2016"},{"key":"10.1016\/j.neunet.2021.09.014_b35","series-title":"Do adversarially robust imagenet models transfer better?","author":"Salman","year":"2020"},{"key":"10.1016\/j.neunet.2021.09.014_b36","series-title":"Advances in neural information processing systems","first-page":"1260","article-title":"Image synthesis with a single (robust) classifier","author":"Santurkar","year":"2019"},{"key":"10.1016\/j.neunet.2021.09.014_b37","series-title":"International conference on information processing in medical imaging","first-page":"146","article-title":"Unsupervised anomaly detection with generative adversarial networks to guide marker discovery","author":"Schlegl","year":"2017"},{"issue":"4","key":"10.1016\/j.neunet.2021.09.014_b38","doi-asserted-by":"crossref","first-page":"2195","DOI":"10.1214\/12-AOS1034","article-title":"A geometric analysis of subspace clustering with outliers","volume":"40","author":"Soltanolkotabi","year":"2012","journal-title":"The Annals of Statistics"},{"key":"10.1016\/j.neunet.2021.09.014_b39","doi-asserted-by":"crossref","unstructured":"Sultani, W., Chen, C., & Shah, M. (2018). Real-world anomaly detection in surveillance videos. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 6479\u20136488).","DOI":"10.1109\/CVPR.2018.00678"},{"key":"10.1016\/j.neunet.2021.09.014_b40","series-title":"Advances in neural information processing systems","first-page":"5858","article-title":"Adversarial training and robustness for multiple perturbations","author":"Tram\u00e8r","year":"2019"},{"issue":"1","key":"10.1016\/j.neunet.2021.09.014_b41","first-page":"684","article-title":"Dual principal component pursuit","volume":"19","author":"Tsakiris","year":"2018","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neunet.2021.09.014_b42","series-title":"Robustness may be at odds with accuracy","author":"Tsipras","year":"2018"},{"key":"10.1016\/j.neunet.2021.09.014_b43","series-title":"Advances in neural information processing systems","first-page":"5061","article-title":"Multivariate triangular quantile maps for novelty detection","author":"Wang","year":"2019"},{"key":"10.1016\/j.neunet.2021.09.014_b44","doi-asserted-by":"crossref","unstructured":"Xia, Y., Cao, X., Wen, F., Hua, G., & Sun, J. (2015). Learning discriminative reconstructions for unsupervised outlier removal. In Proceedings of the ieee international conference on computer vision (pp. 1511\u20131519).","DOI":"10.1109\/ICCV.2015.177"},{"key":"10.1016\/j.neunet.2021.09.014_b45","series-title":"Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms","author":"Xiao","year":"2017"},{"key":"10.1016\/j.neunet.2021.09.014_b46","series-title":"Advances in neural information processing systems","first-page":"2496","article-title":"Robust PCA via outlier pursuit","author":"Xu","year":"2010"},{"key":"10.1016\/j.neunet.2021.09.014_b47","series-title":"European conference on computer vision","first-page":"818","article-title":"Visualizing and understanding convolutional networks","author":"Zeiler","year":"2014"},{"key":"10.1016\/j.neunet.2021.09.014_b48","series-title":"Deep structured energy based models for anomaly detection","author":"Zhai","year":"2016"},{"key":"10.1016\/j.neunet.2021.09.014_b49","series-title":"Interpreting adversarially trained convolutional neural networks","author":"Zhang","year":"2019"},{"key":"10.1016\/j.neunet.2021.09.014_b50","doi-asserted-by":"crossref","unstructured":"Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., & Hua, X.-S. (2017). Spatio-temporal autoencoder for video anomaly detection. In Proceedings of the 25th acm international conference on multimedia (pp. 1933\u20131941).","DOI":"10.1145\/3123266.3123451"},{"key":"10.1016\/j.neunet.2021.09.014_b51","series-title":"Adversarially regularized autoencoders","author":"Zhao","year":"2018"},{"key":"10.1016\/j.neunet.2021.09.014_b52","doi-asserted-by":"crossref","unstructured":"Zhou, C., & Paffenroth, R. C. (2017a). Anomaly detection with robust deep autoencoders. In Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining (pp. 665\u2013674).","DOI":"10.1145\/3097983.3098052"},{"key":"10.1016\/j.neunet.2021.09.014_b53","series-title":"Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining","first-page":"665","article-title":"Anomaly detection with robust deep autoencoders","author":"Zhou","year":"2017"},{"key":"10.1016\/j.neunet.2021.09.014_b54","article-title":"Sensitivity, specificity, accuracy, associated confidence interval and roc analysis with practical sas implementations","author":"Zhu","year":"2010","journal-title":"Health Care and Life Sciences"},{"key":"10.1016\/j.neunet.2021.09.014_b55","series-title":"Deep autoencoding gaussian mixture model for unsupervised anomaly detection","author":"Zong","year":"2018"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608021003646?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608021003646?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,5]],"date-time":"2023-03-05T06:23:27Z","timestamp":1677997407000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608021003646"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12]]},"references-count":55,"alternative-id":["S0893608021003646"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2021.09.014","relation":{},"ISSN":["0893-6080"],"issn-type":[{"value":"0893-6080","type":"print"}],"subject":[],"published":{"date-parts":[[2021,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"ARAE: Adversarially robust training of autoencoders improves novelty detection","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2021.09.014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}