{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T12:34:13Z","timestamp":1723120453529},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,7,1]],"date-time":"2020-07-01T00:00:00Z","timestamp":1593561600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001824","name":"Czech Science Foundation","doi-asserted-by":"publisher","award":["18-23827S"],"id":[{"id":"10.13039\/501100001824","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Institute of Computer Science","award":["67985807"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1016\/j.neunet.2020.04.015","type":"journal-article","created":{"date-parts":[[2020,4,20]],"date-time":"2020-04-20T16:01:55Z","timestamp":1587398515000},"page":"168-181","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["Vulnerability of classifiers to evolutionary generated adversarial examples"],"prefix":"10.1016","volume":"127","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3879-3459","authenticated-orcid":false,"given":"Petra","family":"Vidnerov\u00e1","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2364-5357","authenticated-orcid":false,"given":"Roman","family":"Neruda","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neunet.2020.04.015_b1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000006","article-title":"Learning deep architectures for AI","volume":"2","author":"Bengio","year":"2009","journal-title":"Foundations and Trends in Machine Learning"},{"key":"10.1016\/j.neunet.2020.04.015_b2","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.patcog.2018.07.023","article-title":"Wild patterns: Ten years after the rise of adversarial machine learning","volume":"84","author":"Biggio","year":"2018","journal-title":"Pattern Recognition"},{"year":"1984","series-title":"Classification and regression trees (wadsworth statistics\/probability)","author":"Breiman","key":"10.1016\/j.neunet.2020.04.015_b3"},{"key":"10.1016\/j.neunet.2020.04.015_b4","series-title":"Proceedings of the 10th ACM workshop on artificial intelligence and security","first-page":"3","article-title":"Adversarial examples are not easily detected: Bypassing ten detection methods","author":"Carlini","year":"2017"},{"year":"2015","series-title":"Keras","author":"Chollet","key":"10.1016\/j.neunet.2020.04.015_b5"},{"issue":"3","key":"10.1016\/j.neunet.2020.04.015_b6","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Machine Learning"},{"key":"10.1016\/j.neunet.2020.04.015_b7","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. 2009. ImageNet: A large-scale hierarchical image database. In CVPR09.","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"10.1016\/j.neunet.2020.04.015_b8","first-page":"2171","article-title":"DEAP: Evolutionary algorithms made easy","volume":"13","author":"Fortin","year":"2012","journal-title":"Journal of Machine Learning Research (JMLR)"},{"key":"10.1016\/j.neunet.2020.04.015_b9","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1162\/neco.1995.7.2.219","article-title":"Regularization theory and neural networks architectures","volume":"2","author":"Girosi","year":"1995","journal-title":"Neural Computation"},{"year":"2014","series-title":"Explaining and harnessing adversarial examples","author":"Goodfellow","key":"10.1016\/j.neunet.2020.04.015_b10"},{"key":"10.1016\/j.neunet.2020.04.015_b11","article-title":"Towards deep neural network architectures robust to adversarial examples","volume":"abs\/1412.5068","author":"Gu","year":"2014","journal-title":"CoRR"},{"key":"10.1016\/j.neunet.2020.04.015_b12","doi-asserted-by":"crossref","first-page":"428","DOI":"10.1016\/j.tics.2007.09.004","article-title":"Learning multiple layers of representation","volume":"11","author":"Hinton","year":"2007","journal-title":"Trends in Cognitive Sciences"},{"year":"2016","series-title":"Deep learning","author":"Ian\u00a0Goodfellow","key":"10.1016\/j.neunet.2020.04.015_b13"},{"key":"10.1016\/j.neunet.2020.04.015_b14","series-title":"Advances in Neural Information Processing Systems, vol. 25","first-page":"1106","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.neunet.2020.04.015_b15","series-title":"ICAISC 2015, LNAI 9119, vol. 1","first-page":"39","article-title":"Complexity of shallow networks representing finite mappings","author":"K\u016frkov\u00e1","year":"2015"},{"key":"10.1016\/j.neunet.2020.04.015_b16","series-title":"Engineering applications of neural networks, communications in computer and information sciences, vol. 629","first-page":"283","article-title":"Lower bounds on complexity of shallow perceptron networks","author":"K\u016frkov\u00e1","year":"2016"},{"key":"10.1016\/j.neunet.2020.04.015_b17","doi-asserted-by":"crossref","first-page":"598","DOI":"10.1016\/j.neucom.2015.07.014","article-title":"Model complexities of shallow networks representing highly-varying functions","volume":"171","author":"K\u016frkov\u00e1","year":"2016","journal-title":"Neurocomputing"},{"year":"2012","series-title":"The mnist database of handwritten digits","author":"LeCun","key":"10.1016\/j.neunet.2020.04.015_b18"},{"key":"10.1016\/j.neunet.2020.04.015_b19","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1007\/978-1-4939-2836-1_2","article-title":"Basics of image analysis","author":"Mendoza","year":"2015","journal-title":"Food Engineering Series"},{"year":"1996","series-title":"An introduction to genetic algorithms","author":"Mitchell","key":"10.1016\/j.neunet.2020.04.015_b20"},{"key":"10.1016\/j.neunet.2020.04.015_b21","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1162\/neco.1989.1.2.281","article-title":"Fast learning in networks of locally-tuned processing units","volume":"1","author":"Moody","year":"1989","journal-title":"Neural Computation"},{"key":"10.1016\/j.neunet.2020.04.015_b22","doi-asserted-by":"crossref","first-page":"1131","DOI":"10.1016\/j.future.2004.03.013","article-title":"Learning methods for radial basis functions networks","volume":"21","author":"Neruda","year":"2005","journal-title":"Future Generation Computer Systems"},{"key":"10.1016\/j.neunet.2020.04.015_b23","article-title":"Deep neural networks are easily fooled: High confidence predictions for unrecognizable images","volume":"abs\/1412.1897","author":"Nguyen","year":"2014","journal-title":"CoRR"},{"key":"10.1016\/j.neunet.2020.04.015_b24","doi-asserted-by":"crossref","unstructured":"Papernot, Nicolas, McDaniel, Patrick\u00a0D., Jha, Somesh, Fredrikson, Matt, Celik, Z. \u00a0Berkay, & Swami, Ananthram (2016). The limitations of deep learning in adversarial settings. In 2016 IEEE European symposium on security and privacy (EuroS&P) (pp. 372\u2013387).","DOI":"10.1109\/EuroSP.2016.36"},{"key":"10.1016\/j.neunet.2020.04.015_b25","series-title":"Proceedings - 2016 IEEE symposium on security and privacy, SP 2016","first-page":"582","article-title":"Distillation as a defense to adversarial perturbations against deep neural networks","author":"Papernot","year":"2016"},{"key":"10.1016\/j.neunet.2020.04.015_b26","first-page":"2825","article-title":"Scikit-learn: Machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"Journal of Machine Learning Research (JMLR)"},{"key":"10.1016\/j.neunet.2020.04.015_b27","doi-asserted-by":"crossref","unstructured":"Stallkamp, Johannes, Schlipsing, Marc, Salmen, Jan, & Igel, Christian (2011). The german traffic sign recognition benchmark: A multi-class classification competition. In IEEE international joint conference on neural networks (pp. 1453\u20131460).","DOI":"10.1109\/IJCNN.2011.6033395"},{"year":"2013","series-title":"Intriguing properties of neural networks","author":"Szegedy","key":"10.1016\/j.neunet.2020.04.015_b28"},{"year":"1998","series-title":"Statistical learning theory","author":"Vapnik","key":"10.1016\/j.neunet.2020.04.015_b29"},{"key":"10.1016\/j.neunet.2020.04.015_b30","doi-asserted-by":"crossref","first-page":"35","DOI":"10.7551\/mitpress\/4057.003.0004","article-title":"A primer on kernel methods","author":"Vert","year":"2004","journal-title":"Kernel Methods in Computational Biology"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608020301350?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608020301350?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,4]],"date-time":"2024-08-04T09:14:31Z","timestamp":1722762871000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608020301350"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7]]},"references-count":30,"alternative-id":["S0893608020301350"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2020.04.015","relation":{},"ISSN":["0893-6080"],"issn-type":[{"type":"print","value":"0893-6080"}],"subject":[],"published":{"date-parts":[[2020,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Vulnerability of classifiers to evolutionary generated adversarial examples","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2020.04.015","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}