{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:50:12Z","timestamp":1732038612249},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61533002"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61673229","61703011"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100011395","name":"National Science and Technology Major Project of China","doi-asserted-by":"publisher","award":["2018ZX07111005"],"id":[{"id":"10.13039\/501100011395","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2020,1]]},"DOI":"10.1016\/j.neunet.2019.09.035","type":"journal-article","created":{"date-parts":[[2019,10,5]],"date-time":"2019-10-05T10:45:08Z","timestamp":1570272308000},"page":"430-440","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":59,"special_numbering":"C","title":["A sparse deep belief network with efficient fuzzy learning framework"],"prefix":"10.1016","volume":"121","author":[{"given":"Gongming","family":"Wang","sequence":"first","affiliation":[]},{"given":"Qing-Shan","family":"Jia","sequence":"additional","affiliation":[]},{"given":"Junfei","family":"Qiao","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Bi","sequence":"additional","affiliation":[]},{"given":"Caixia","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neunet.2019.09.035_b1","series-title":"Use of dropouts and sparsity for regularization of autoencoders in deep neural networks[D]","author":"Ali","year":"2015"},{"issue":"11","key":"10.1016\/j.neunet.2019.09.035_b2","doi-asserted-by":"crossref","first-page":"1626","DOI":"10.1109\/LSP.2017.2752459","article-title":"Automatic modulation classification using deep learning based on sparse autoencoders with nonnegativity constraints","volume":"24","author":"Ali","year":"2017","journal-title":"IEEE Signal Processing Letters"},{"issue":"1","key":"10.1016\/j.neunet.2019.09.035_b3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000006","article-title":"Learning deep architectures for AI","volume":"2","author":"Bengio","year":"2009","journal-title":"Foundations and Trends in Machine Learning"},{"issue":"8","key":"10.1016\/j.neunet.2019.09.035_b4","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","article-title":"Representation learning: Areview and new perspectives","volume":"35","author":"Bengio","year":"2013","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2019.09.035_b5","first-page":"1185","article-title":"Sparse feature learning for deep belief networks","author":"Boureau","year":"2008","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"7","key":"10.1016\/j.neunet.2019.09.035_b6","doi-asserted-by":"crossref","first-page":"1693","DOI":"10.1109\/TIM.2017.2669947","article-title":"Multisensor feature fusion for bearing faultdiagnosis using sparse autoencoder and deep belief network","volume":"66","author":"Chen","year":"2017","journal-title":"IEEE Transactions on Instrumentation and Measurement"},{"key":"10.1016\/j.neunet.2019.09.035_b7","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.ins.2015.09.048","article-title":"Randomized algorithms for nonlinear system identification with deep learning modification","volume":"364","author":"De la\u00a0Rosa","year":"2016","journal-title":"Information Sciences"},{"issue":"2","key":"10.1016\/j.neunet.2019.09.035_b8","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1007\/s10462-011-9208-z","article-title":"An optimizing BP neural network algorithm based on genetic algorithm","volume":"36","author":"Ding","year":"2011","journal-title":"Artificial Intelligence Review"},{"issue":"8","key":"10.1016\/j.neunet.2019.09.035_b9","doi-asserted-by":"crossref","first-page":"800","DOI":"10.1016\/j.knosys.2010.05.004","article-title":"Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting","volume":"23","author":"Hadavandi","year":"2010","journal-title":"Knowledge-Based Systems"},{"issue":"6","key":"10.1016\/j.neunet.2019.09.035_b10","doi-asserted-by":"crossref","first-page":"1129","DOI":"10.1109\/TFUZZ.2010.2070841","article-title":"A self-organizing fuzzy neural network based on agrowing-and-pruning algorithm","volume":"18","author":"Han","year":"2010","journal-title":"IEEE Transactions on Fuzzy Systems"},{"key":"10.1016\/j.neunet.2019.09.035_b11","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.neunet.2013.01.015","article-title":"Efficient self-organizing multilayer neural network for nonlinear system modeling","volume":"43","author":"Han","year":"2013","journal-title":"Neural Networks"},{"issue":"7","key":"10.1016\/j.neunet.2019.09.035_b12","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","article-title":"A fast learning algorithm for deep belief nets","volume":"18","author":"Hinton","year":"2006","journal-title":"Neural Computation"},{"issue":"5786","key":"10.1016\/j.neunet.2019.09.035_b13","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"Hinton","year":"2006","journal-title":"Science"},{"issue":"5","key":"10.1016\/j.neunet.2019.09.035_b14","doi-asserted-by":"crossref","first-page":"801","DOI":"10.1109\/72.159069","article-title":"On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm","volume":"3","author":"Horikawa","year":"1992","journal-title":"IEEE Transactions on Neural Networks"},{"issue":"2","key":"10.1016\/j.neunet.2019.09.035_b15","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.neunet.2004.11.002","article-title":"Analysis of global exponential stability and periodic solutions of neural networks with time-varying delays","volume":"18","author":"Huang","year":"2005","journal-title":"Neural Networks"},{"issue":"11","key":"10.1016\/j.neunet.2019.09.035_b16","doi-asserted-by":"crossref","first-page":"2629","DOI":"10.1109\/TCSI.2012.2189060","article-title":"Orthogonal least squares algorithm for training cascade neural networks","volume":"59","author":"Huang","year":"2012","journal-title":"IEEE Transactions on Circuits and Systems. I. Regular Papers"},{"issue":"12","key":"10.1016\/j.neunet.2019.09.035_b17","doi-asserted-by":"crossref","first-page":"1707","DOI":"10.1016\/S0005-1098(96)80007-0","article-title":"Identification of nonlinear dynamical systems using multilayered neural networks","volume":"32","author":"Jagannathan","year":"1996","journal-title":"Automatica"},{"issue":"9","key":"10.1016\/j.neunet.2019.09.035_b18","doi-asserted-by":"crossref","first-page":"3179","DOI":"10.1016\/j.patcog.2014.03.025","article-title":"A sparse-response deep belief network based on rate distortion theory","volume":"47","author":"Ji","year":"2014","journal-title":"Pattern Recognition"},{"issue":"2","key":"10.1016\/j.neunet.2019.09.035_b19","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1007\/s10115-017-1049-x","article-title":"Effective sparsity control in deep belief networks using normal regularization term","volume":"53","author":"Keyvanrad","year":"2017","journal-title":"Knowledge and Information Systems"},{"issue":"7553","key":"10.1016\/j.neunet.2019.09.035_b20","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.neunet.2019.09.035_b21","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1109\/TIP.2017.2765833","article-title":"Visual representation and classification by learning group sparse deep stacking network","volume":"27","author":"Li","year":"2018","journal-title":"IEEE Transactions on Image Processing"},{"issue":"4","key":"10.1016\/j.neunet.2019.09.035_b22","doi-asserted-by":"crossref","first-page":"898","DOI":"10.1109\/TFUZZ.2008.917302","article-title":"A probabilistic neural-fuzzy learning system for stochastic modeling","volume":"16","author":"Li","year":"2008","journal-title":"IEEE Transactions on Fuzzy System"},{"key":"10.1016\/j.neunet.2019.09.035_b23","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.asoc.2016.01.028","article-title":"A self-organizing cascade neural network with random weights for nonlinear system modeling","volume":"42","author":"Li","year":"2016","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.neunet.2019.09.035_b24","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/j.automatica.2018.03.007","article-title":"Recursive nonlinear-system identification using latent variables","volume":"93","author":"Mattsson","year":"2018","journal-title":"Automatica"},{"issue":"1","key":"10.1016\/j.neunet.2019.09.035_b25","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/s11265-006-9774-5","article-title":"Learning sparse overcomplete codes for images","volume":"45","author":"Murray","year":"2006","journal-title":"Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology"},{"issue":"6583","key":"10.1016\/j.neunet.2019.09.035_b26","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1038\/381607a0","article-title":"Emergence of simple-cell receptive field properties by learning a sparse code for natural images","volume":"381","author":"Olshausen","year":"1996","journal-title":"Nature"},{"key":"10.1016\/j.neunet.2019.09.035_b27","doi-asserted-by":"crossref","first-page":"875","DOI":"10.1016\/j.asoc.2015.08.043","article-title":"Fine-tuning deep belief networks using harmony search","volume":"46","author":"Papa","year":"2016","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.neunet.2019.09.035_b28","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.knosys.2014.11.025","article-title":"Designing granular fuzzy models: A hierarchical approach to fuzzy modeling","volume":"76","author":"Pedrycz","year":"2015","journal-title":"Knowledge-Based Systems"},{"issue":"8","key":"10.1016\/j.neunet.2019.09.035_b29","doi-asserted-by":"crossref","first-page":"1729","DOI":"10.1016\/j.automatica.2012.05.034","article-title":"Identification and modeling of nonlinear dynamical systems using a novel self-organizing rbf-based approach","volume":"48","author":"Qiao","year":"2012","journal-title":"Automatica"},{"issue":"2","key":"10.1016\/j.neunet.2019.09.035_b30","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1109\/TNNLS.2016.2514275","article-title":"Growing echo-state network with multiple subreservoirs","volume":"28","author":"Qiao","year":"2017","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neunet.2019.09.035_b31","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.neunet.2018.02.010","article-title":"An adaptive deep q-learning strategy for handwritten digit recognition","volume":"107","author":"Qiao","year":"2018","journal-title":"Neural Networks"},{"key":"10.1016\/j.neunet.2019.09.035_b32","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.neunet.2017.10.006","article-title":"A deep belief network with PLSR for nonlinear system modeling","volume":"104","author":"Qiao","year":"2018","journal-title":"Neural Networks"},{"key":"10.1016\/j.neunet.2019.09.035_b33","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1016\/j.asoc.2018.01.019","article-title":"A self-organizing deep belief network for nonlinear system modeling","volume":"65","author":"Qiao","year":"2018","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.neunet.2019.09.035_b34","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","article-title":"Deep learning in neural networks: An overview","volume":"61","author":"Schmidhuber","year":"2015","journal-title":"Neural Networks"},{"issue":"11","key":"10.1016\/j.neunet.2019.09.035_b35","doi-asserted-by":"crossref","first-page":"2162","DOI":"10.1109\/TASLP.2017.2748240","article-title":"Deep-sparse-representation-based features for speech recognition","volume":"25","author":"Sharma","year":"2017","journal-title":"IEEE\/ACM Transactions on Audio, Speech and Language Processing (TASLP)"},{"key":"10.1016\/j.neunet.2019.09.035_b36","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.knosys.2017.05.022","article-title":"Deep belief echo-state network and its application to time series prediction","volume":"130","author":"Sun","year":"2017","journal-title":"Knowledge-Based Systems"},{"issue":"2","key":"10.1016\/j.neunet.2019.09.035_b37","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1109\/TASE.2018.2865663","article-title":"Tl-gdbn: Growing deep belief network with transfer learning","volume":"16","author":"Wang","year":"2019","journal-title":"IEEE Transactions on Automation Science and Engineering"},{"key":"10.1016\/j.neunet.2019.09.035_b38","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.knosys.2017.10.009","article-title":"Adaptive kernel density-based anomaly detection for nonlinear systems","volume":"139","author":"Zhang","year":"2018","journal-title":"Knowledge-Based Systems"},{"issue":"7","key":"10.1016\/j.neunet.2019.09.035_b39","doi-asserted-by":"crossref","first-page":"5882","DOI":"10.1109\/TIE.2017.2777415","article-title":"A nonlinear fuzzy neural network modeling approach using an improved genetic algorithm","volume":"65","author":"Zhang","year":"2018","journal-title":"IEEE Transactions on Industrial Electronics"},{"issue":"13\u201315","key":"10.1016\/j.neunet.2019.09.035_b40","doi-asserted-by":"crossref","first-page":"2848","DOI":"10.1016\/j.neucom.2007.08.015","article-title":"Asymptotic stability analysis of neural networks with successive time delay components","volume":"71","author":"Zhao","year":"2008","journal-title":"Neurocomputing"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089360801930317X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089360801930317X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,2,10]],"date-time":"2020-02-10T02:29:17Z","timestamp":1581301757000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S089360801930317X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,1]]},"references-count":40,"alternative-id":["S089360801930317X"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2019.09.035","relation":{},"ISSN":["0893-6080"],"issn-type":[{"value":"0893-6080","type":"print"}],"subject":[],"published":{"date-parts":[[2020,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A sparse deep belief network with efficient fuzzy learning framework","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2019.09.035","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}