{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,28]],"date-time":"2024-07-28T02:57:16Z","timestamp":1722135436714},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,4,1]],"date-time":"2017-04-01T00:00:00Z","timestamp":1491004800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002322","name":"CAPES","doi-asserted-by":"publisher","award":["446831\/2014-0"],"id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"CNPq","doi-asserted-by":"publisher","award":["461278\/2014-6","APQ-0192-1.03\/14"],"id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006162","name":"Facepe","doi-asserted-by":"publisher","award":["APQ-0517-1.03\/14"],"id":[{"id":"10.13039\/501100006162","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2017,4]]},"DOI":"10.1016\/j.neunet.2017.02.004","type":"journal-article","created":{"date-parts":[[2017,2,10]],"date-time":"2017-02-10T15:01:33Z","timestamp":1486738893000},"page":"114-124","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["A perturbative approach for enhancing the performance of time series forecasting"],"prefix":"10.1016","volume":"88","author":[{"given":"Paulo S.G.","family":"de Mattos Neto","sequence":"first","affiliation":[]},{"given":"Tiago A.E.","family":"Ferreira","sequence":"additional","affiliation":[]},{"given":"Aranildo R.","family":"Lima","sequence":"additional","affiliation":[]},{"given":"Germano C.","family":"Vasconcelos","sequence":"additional","affiliation":[]},{"given":"George D.C.","family":"Cavalcanti","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"0","key":"10.1016\/j.neunet.2017.02.004_br000005","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.ins.2014.09.002","article-title":"A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting","volume":"295","author":"Abdollahzade","year":"2015","journal-title":"Information Sciences"},{"issue":"13\u201315","key":"10.1016\/j.neunet.2017.02.004_br000010","doi-asserted-by":"crossref","first-page":"2540","DOI":"10.1016\/j.neucom.2010.06.004","article-title":"Chaotic time series prediction with residual analysis method using hybrid Elman-NARX neural networks","volume":"73","author":"Ardalani-Farsa","year":"2010","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neunet.2017.02.004_br000015","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.inffus.2015.12.002","article-title":"Fusion of instance selection methods in regression tasks","volume":"30","author":"Arnaiz-Gonz\u00e1lez","year":"2016","journal-title":"Information Fusion"},{"issue":"1","key":"10.1016\/j.neunet.2017.02.004_br000020","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.inffus.2006.10.009","article-title":"A new boosting algorithm for improved time-series forecasting with recurrent neural networks","volume":"9","author":"Assaad","year":"2008","journal-title":"Information Fusion"},{"issue":"0","key":"10.1016\/j.neunet.2017.02.004_br000025","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.asoc.2014.05.028","article-title":"A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data","volume":"23","author":"Babu","year":"2014","journal-title":"Applied Soft Computing"},{"key":"10.1016\/j.neunet.2017.02.004_br000030","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1016\/j.neunet.2015.08.010","article-title":"Prediction of telephone calls load using echo state network with exogenous variables","volume":"71","author":"Bianchi","year":"2015","journal-title":"Neural Networks"},{"key":"10.1016\/j.neunet.2017.02.004_br000035","series-title":"Time series analysis: forecasting and control","author":"Box","year":"2008"},{"key":"10.1016\/j.neunet.2017.02.004_br000040","series-title":"Elements of information theory","author":"Cover","year":"2006"},{"issue":"2","key":"10.1016\/j.neunet.2017.02.004_br000045","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.inffus.2010.11.002","article-title":"Information fusion as a tool for forecasting\/prediction - an overview","volume":"12","author":"Dasarathy","year":"2011","journal-title":"Information Fusion"},{"key":"10.1016\/j.neunet.2017.02.004_br000050","doi-asserted-by":"crossref","unstructured":"de Mattos Neto, P., Lima, A., Ferreira, T., & Cavalcanti, G. (2010). An intelligent perturbative approach for the time series forecasting problem. In Proceedings of the international joint conference on neural networks IJCNN (pp. 1\u20138) http:\/\/dx.doi.org\/10.1109\/IJCNN.2010.5596700.","DOI":"10.1109\/IJCNN.2010.5596700"},{"key":"10.1016\/j.neunet.2017.02.004_br000055","series-title":"Proceedings of the 12th annual conference on genetic and evolutionary computation","first-page":"1477","article-title":"Time series forecasting using a perturbative intelligent system","author":"de Mattos Neto","year":"2010"},{"issue":"5","key":"10.1016\/j.neunet.2017.02.004_br000060","doi-asserted-by":"crossref","first-page":"1457","DOI":"10.1111\/j.1539-6924.2008.01117.x","article-title":"Bayesian methodology for model uncertainty using model performance data","volume":"28","author":"Droguett","year":"2008","journal-title":"Risk Analysis"},{"issue":"18","key":"10.1016\/j.neunet.2017.02.004_br000065","doi-asserted-by":"crossref","first-page":"8049","DOI":"10.1016\/j.eswa.2014.06.041","article-title":"Time series forecasting by neural networks: A knee point-based multiobjective evolutionary algorithm approach","volume":"41","author":"Du","year":"2014","journal-title":"Expert Systems with Applications"},{"issue":"3","key":"10.1016\/j.neunet.2017.02.004_br000070","doi-asserted-by":"crossref","first-page":"854","DOI":"10.1016\/j.eswa.2012.05.040","article-title":"Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks","volume":"40","author":"Egrioglu","year":"2013","journal-title":"Expert Systems with Applications"},{"issue":"2","key":"10.1016\/j.neunet.2017.02.004_br000075","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1007\/s11063-008-9085-x","article-title":"A new intelligent system methodology for time series forecasting with artificial neural networks","volume":"28","author":"Ferreira","year":"2008","journal-title":"Neural Processing Letters"},{"issue":"0","key":"10.1016\/j.neunet.2017.02.004_br000080","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neunet.2013.10.008","article-title":"Correcting and combining time series forecasters","volume":"50","author":"Firmino","year":"2014","journal-title":"Neural Networks"},{"issue":"0","key":"10.1016\/j.neunet.2017.02.004_br000085","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/j.neucom.2014.11.030","article-title":"Error modeling approach to improve time series forecasters","volume":"153","author":"Firmino","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neunet.2017.02.004_br000090","unstructured":"Ginzburg, I., & Horn, D. (1993). Combined neural networks for time series analysis. In Advances in neural information processing systems 6, [7th NIPS conference, Denver, Colorado, USA, 1993] (pp. 224\u2013231)."},{"key":"10.1016\/j.neunet.2017.02.004_br000095","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.neunet.2014.03.004","article-title":"Stochastic nonlinear time series forecasting using time-delay reservoir computers: Performance and universality","volume":"55","author":"Grigoryeva","year":"2014","journal-title":"Neural Networks"},{"key":"10.1016\/j.neunet.2017.02.004_br000100","series-title":"Neural networks: a comprehensive foundation","author":"Haykin","year":"2007"},{"key":"10.1016\/j.neunet.2017.02.004_br000105","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1115\/1.3658902","article-title":"New results in linear filtering and prediction theory","volume":"83","author":"Kalman","year":"1961","journal-title":"Transactions of the ASME. Series D, Journal of Basic Engineering"},{"issue":"2","key":"10.1016\/j.neunet.2017.02.004_br000110","doi-asserted-by":"crossref","first-page":"2664","DOI":"10.1016\/j.asoc.2010.10.015","article-title":"A novel hybridization of artificial neural networks and ARIMA models for time series forecasting","volume":"11","author":"Khashei","year":"2011","journal-title":"Applied Soft Computing"},{"issue":"1","key":"10.1016\/j.neunet.2017.02.004_br000115","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.cie.2012.01.017","article-title":"Hybridization of autoregressive integrated moving average (ARIMA) with probabilistic neural networks (PNNs)","volume":"63","author":"Khashei","year":"2012","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.neunet.2017.02.004_br000120","series-title":"Modern digital and analog communication systems 3e osece","author":"Lathi","year":"1998"},{"issue":"1","key":"10.1016\/j.neunet.2017.02.004_br000125","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1109\/TNN.2002.804317","article-title":"Tuning of the structure and parametrs of the neural network using an improved genetic algorithm","volume":"14","author":"Leung","year":"2003","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neunet.2017.02.004_br000130","doi-asserted-by":"crossref","unstructured":"Neto, P. de M., Petry, G., Aranildo, R., & Ferreira, T. (2009). Combining artificial neural network and particle swarm system for time series forecasting. In International joint conference on neural networks (pp. 2230\u20132237) http:\/\/dx.doi.org\/10.1109\/IJCNN.2009.5178926.","DOI":"10.1109\/IJCNN.2009.5178926"},{"key":"10.1016\/j.neunet.2017.02.004_br000135","series-title":"Modern quantum mechanics","author":"Sakurai","year":"1994"},{"issue":"2","key":"10.1016\/j.neunet.2017.02.004_br000140","doi-asserted-by":"crossref","first-page":"790","DOI":"10.1109\/TSMCB.2012.2219859","article-title":"Optimal selection of parameters for nonuniform embedding of chaotic time series using ant colony optimization","volume":"43","author":"Shen","year":"2013","journal-title":"IEEE Transactions on Cybernetics"},{"issue":"16","key":"10.1016\/j.neunet.2017.02.004_br000145","doi-asserted-by":"crossref","first-page":"7147","DOI":"10.1016\/j.eswa.2014.06.001","article-title":"Measurement of fitness function efficiency using data envelopment analysis","volume":"41","author":"Silva","year":"2014","journal-title":"Expert Systems with Applications"},{"issue":"0","key":"10.1016\/j.neunet.2017.02.004_br000150","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.neucom.2014.05.062","article-title":"Evolutionary multi-objective generation of recurrent neural network ensembles for time series prediction","volume":"143","author":"Smith","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neunet.2017.02.004_br000155","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.inffus.2011.12.001","article-title":"Combining cluster analysis with classifier ensembles to predict financial distress","volume":"16","author":"Tsai","year":"2014","journal-title":"Information Fusion"},{"key":"10.1016\/j.neunet.2017.02.004_br000160","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.inffus.2012.07.001","article-title":"Guest editorial: Hybrid intelligent fusion systems","volume":"16","author":"Wozniak","year":"2014","journal-title":"Information Fusion"},{"issue":"0","key":"10.1016\/j.neunet.2017.02.004_br000165","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/S0925-2312(01)00702-0","article-title":"Time series forecasting using a hybrid ARIMA and neural network model","volume":"50","author":"Zhang","year":"2003","journal-title":"Neurocomputing"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608017300308?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608017300308?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,9]],"date-time":"2019-08-09T14:38:02Z","timestamp":1565361482000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608017300308"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,4]]},"references-count":33,"alternative-id":["S0893608017300308"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2017.02.004","relation":{},"ISSN":["0893-6080"],"issn-type":[{"value":"0893-6080","type":"print"}],"subject":[],"published":{"date-parts":[[2017,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A perturbative approach for enhancing the performance of time series forecasting","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2017.02.004","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}