{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T15:45:31Z","timestamp":1726760731832},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,4,1]],"date-time":"2017-04-01T00:00:00Z","timestamp":1491004800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,2,17]],"date-time":"2018-02-17T00:00:00Z","timestamp":1518825600000},"content-version":"am","delay-in-days":322,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Science Foundation of China","doi-asserted-by":"publisher","award":["61272374","61428202"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National High Technology Research and Development Program (863 Program) of China","award":["2015AA015403"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2017,4]]},"DOI":"10.1016\/j.neunet.2017.02.003","type":"journal-article","created":{"date-parts":[[2017,2,8]],"date-time":"2017-02-08T14:17:13Z","timestamp":1486563433000},"page":"74-89","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":199,"special_numbering":"C","title":["Multi-view clustering via multi-manifold regularized non-negative matrix factorization"],"prefix":"10.1016","volume":"88","author":[{"given":"Linlin","family":"Zong","sequence":"first","affiliation":[]},{"given":"Xianchao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Long","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Qianli","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neunet.2017.02.003_br000005","series-title":"Data clustering: algorithms and applications","author":"Aggarwal","year":"2013"},{"key":"10.1016\/j.neunet.2017.02.003_br000010","unstructured":"Akata, Z., Thurau, C., & Bauckhage, C. (2011). Non-negative matrix factorization in multimodality data for segmentation and label prediction. In 16th Computer vision winter workshop (CVWW) (pp. 1\u20138)."},{"key":"10.1016\/j.neunet.2017.02.003_br000015","unstructured":"Aldous, D., & Fill, J. (2002). Reversible Markov chains and random walks on graphs. Online version available at http:\/\/www.stat.berkeley.edu\/~aldous\/RWG\/book.html."},{"key":"10.1016\/j.neunet.2017.02.003_br000020","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/S0167-6377(02)00231-6","article-title":"Mirror descent and nonlinear projected subgradient methods for convex optimization","volume":"31","author":"Beck","year":"2003","journal-title":"Operations Research Letters"},{"key":"10.1016\/j.neunet.2017.02.003_br000025","doi-asserted-by":"crossref","unstructured":"Bickel, S., & Scheffer, T. (2004). Multi-view clustering. In IEEE international conference on data mining (ICDM). Vol. 4, (pp. 19\u201326).","DOI":"10.1109\/ICDM.2004.10095"},{"key":"10.1016\/j.neunet.2017.02.003_br000030","series-title":"Convex optimization","author":"Boyd","year":"2004"},{"key":"10.1016\/j.neunet.2017.02.003_br000035","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.1109\/TPAMI.2010.231","article-title":"Graph regularized nonnegative matrix factorization for data representation","volume":"33","author":"Cai","year":"2011","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2017.02.003_br000040","unstructured":"Cai, X., Nie, F., & Huang, H. (2013). Multi-view k-means clustering on big data. In Proceedings of the 23rd international joint conference on artificial intelligence (IJCAI) (pp. 2598\u20132604)."},{"key":"10.1016\/j.neunet.2017.02.003_br000045","doi-asserted-by":"crossref","unstructured":"Cheng, H., Liu, Z., & Yang, J. (2009). Sparsity induced similarity measure for label propagation. In IEEE 12th international conference on computer vision (ICCV) (pp. 317\u2013324).","DOI":"10.1109\/ICCV.2009.5459267"},{"key":"10.1016\/j.neunet.2017.02.003_br000050","series-title":"Spectral graph theory vol. 92","author":"Chung","year":"1997"},{"key":"10.1016\/j.neunet.2017.02.003_br000055","doi-asserted-by":"crossref","unstructured":"Ding, C. H., He, X., & Simon, H. D. (2005). On the equivalence of nonnegative matrix factorization and spectral clustering. In proceedings of the 5th siam international conference on data mining (SDM) (pp. 606\u2013610).","DOI":"10.1137\/1.9781611972757.70"},{"key":"10.1016\/j.neunet.2017.02.003_br000060","doi-asserted-by":"crossref","first-page":"1227","DOI":"10.1109\/TPAMI.2012.57","article-title":"Ensemble manifold regularization","volume":"34","author":"Geng","year":"2012","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2017.02.003_br000065","doi-asserted-by":"crossref","unstructured":"Greene, D., & Cunningham, P. (2013). Producing a unified graph representation from multiple social network views. In Proceedings of the 5th annual acm web science conference (pp. 118\u2013121).","DOI":"10.1145\/2464464.2464471"},{"key":"10.1016\/j.neunet.2017.02.003_br000070","first-page":"2579","article-title":"Visualizing high-dimensional data using t-sne","volume":"9","author":"Hinton","year":"2008","journal-title":"Vigiliae Christianae"},{"key":"10.1016\/j.neunet.2017.02.003_br000075","doi-asserted-by":"crossref","unstructured":"Kuang, D., Park, H., & Ding, C. H. (2012). Symmetric nonnegative matrix factorization for graph clustering. In Proceedings of the 12th siam international conference on data mining (SDM) (pp. 106\u2013117).","DOI":"10.1137\/1.9781611972825.10"},{"key":"10.1016\/j.neunet.2017.02.003_br000080","unstructured":"Kumar, A., & Daum\u00e9, H. (2011). A co-training approach for multi-view spectral clustering. In Proceedings of the 28th international conference on machine learning (ICML) (pp. 393\u2013400)."},{"key":"10.1016\/j.neunet.2017.02.003_br000085","unstructured":"Kumar, A., Rai, P., & Daume, H. (2011). Co-regularized multi-view spectral clustering. In Advances in neural information processing systems (NIPS)(pp. 1413\u20131421)."},{"key":"10.1016\/j.neunet.2017.02.003_br000090","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1038\/44565","article-title":"Learning the parts of objects by non-negative matrix factorization","volume":"401","author":"Lee","year":"1999","journal-title":"Nature"},{"key":"10.1016\/j.neunet.2017.02.003_br000095","unstructured":"Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances in neural information processing systems (NIPS) (pp. 556\u2013562)."},{"key":"10.1016\/j.neunet.2017.02.003_br000100","first-page":"407","article-title":"Multi-manifold concept factorization for data clustering","volume":"7","author":"Li","year":"2013","journal-title":"International Journal of Software Informatics"},{"key":"10.1016\/j.neunet.2017.02.003_br000105","doi-asserted-by":"crossref","unstructured":"Li, S.-Y., Jiang, Y., & Zhou, Z.-H. (2014). Partial multi-view clustering. In Twenty-eighth aaai conference on artificial intelligence (pp. 1968\u20131974).","DOI":"10.1609\/aaai.v28i1.8973"},{"key":"10.1016\/j.neunet.2017.02.003_br000110","first-page":"1945","article-title":"Group sparse non-negative matrix factorization for multi-manifold learning","volume":"27","author":"Liu","year":"2005","journal-title":"Intelligence"},{"key":"10.1016\/j.neunet.2017.02.003_br000115","doi-asserted-by":"crossref","unstructured":"Liu, J., Wang, C., Gao, J., & Han, J. (2013). Multi-view clustering via joint nonnegative matrix factorization. In Proceedings of the 13th siam international conference on data mining (SDM) (pp. 252\u2013260).","DOI":"10.1137\/1.9781611972832.28"},{"key":"10.1016\/j.neunet.2017.02.003_br000120","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1126\/science.290.5500.2323","article-title":"Nonlinear dimensionality reduction by locally linear embedding","volume":"290","author":"Roweis","year":"2000","journal-title":"Science"},{"key":"10.1016\/j.neunet.2017.02.003_br000125","doi-asserted-by":"crossref","unstructured":"Shen, B., & Si, L. (2010). Non-negative matrix factorization clustering on multiple manifolds. In Proceedings of the 24th aaai conference on artificial intelligence (AAAI).","DOI":"10.1609\/aaai.v24i1.7664"},{"key":"10.1016\/j.neunet.2017.02.003_br000130","doi-asserted-by":"crossref","unstructured":"Singh, A. P., & Gordon, G. J. (2008). Relational learning via collective matrix factorization. In Proceedings of the 14th ACM SIGKDD International conference on Knowledge discovery and data mining (SIGKDD) (pp. 650\u2013658).","DOI":"10.1145\/1401890.1401969"},{"key":"10.1016\/j.neunet.2017.02.003_br000135","doi-asserted-by":"crossref","unstructured":"Tian, Z., & Kuang, R. (2012). Global linear neighborhoods for efficient label propagation. In Proceedings of the 12th SIAM international conference on data mining (SDM) (pp. 863\u2013872).","DOI":"10.1137\/1.9781611972825.74"},{"key":"10.1016\/j.neunet.2017.02.003_br000140","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","article-title":"A tutorial on spectral clustering","volume":"17","author":"Von Luxburg","year":"2007","journal-title":"Statistics and Computing"},{"key":"10.1016\/j.neunet.2017.02.003_br000145","unstructured":"Wang, Y., Jiang, Y., Wu, Y., & Zhou, Z. H. (2011). Local and structural consistency for multi-manifold clustering. In International joint conference on artificial intelligence (pp. 1559\u20131564)."},{"key":"10.1016\/j.neunet.2017.02.003_br000150","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1109\/TKDE.2007.190672","article-title":"Label propagation through linear neighborhoods","volume":"20","author":"Wang","year":"2008","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"10.1016\/j.neunet.2017.02.003_br000155","doi-asserted-by":"crossref","unstructured":"Xu, W., Liu, X., & Gong, Y. (2003). Document clustering based on non-negative matrix factorization. In Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval (SIGIR)(pp. 267\u2013273).","DOI":"10.1145\/860435.860485"},{"key":"10.1016\/j.neunet.2017.02.003_br000160","doi-asserted-by":"crossref","unstructured":"Yan, S., & Wang, H. (2009). Semi-supervised learning by sparse representation. In Proceedings of the 9th siam international conference on data mining (SDM)(pp. 792\u2013801).","DOI":"10.1137\/1.9781611972795.68"},{"key":"10.1016\/j.neunet.2017.02.003_br000165","doi-asserted-by":"crossref","unstructured":"Yang, N., Sang, Y., He, R., & Wang, X. (2010). Label propagation algorithm based on non-negative sparse representation. In Life System modeling and intelligent computing (pp. 348\u2013357).","DOI":"10.1007\/978-3-642-15615-1_42"},{"key":"10.1016\/j.neunet.2017.02.003_br000170","doi-asserted-by":"crossref","unstructured":"Zhang, X., Zhao, L., Zong, L., Liu, X., & Yu, H. (2014). Multi-view clustering via multi-manifold regularized nonnegative matrix factorization. In IEEE international conference on data mining (ICDM) (pp. 1103\u20131108).","DOI":"10.1109\/ICDM.2014.19"},{"key":"10.1016\/j.neunet.2017.02.003_br000175","doi-asserted-by":"crossref","unstructured":"Zhang, X., Zong, L., Liu, X., & Yu, H. (2015). Constrained nmf-based multi-view clustering on unmapped data. In Twenty-ninth aaai conference on artificial intelligence (pp. 3174\u20133180).","DOI":"10.1609\/aaai.v29i1.9552"},{"key":"10.1016\/j.neunet.2017.02.003_br000180","doi-asserted-by":"crossref","unstructured":"Zhou, D., & Burges, C. J. (2007). Spectral clustering and transductive learning with multiple views. In Proceedings of the 24th International conference on Machine learning (ICML) (pp. 1159\u20131166).","DOI":"10.1145\/1273496.1273642"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089360801730028X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089360801730028X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,22]],"date-time":"2024-06-22T10:53:20Z","timestamp":1719053600000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S089360801730028X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,4]]},"references-count":36,"alternative-id":["S089360801730028X"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2017.02.003","relation":{},"ISSN":["0893-6080"],"issn-type":[{"value":"0893-6080","type":"print"}],"subject":[],"published":{"date-parts":[[2017,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-view clustering via multi-manifold regularized non-negative matrix factorization","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2017.02.003","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}