{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,5]],"date-time":"2024-07-05T10:00:10Z","timestamp":1720173610386},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,4,1]],"date-time":"2017-04-01T00:00:00Z","timestamp":1491004800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61672125","61300086","61572096","61432003"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Fundamental Research Funds for the Central Universities","award":["DUT15QY15"]},{"name":"Hong Kong Scholar Program","award":["XJ2015008"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2017,4]]},"DOI":"10.1016\/j.neunet.2017.02.002","type":"journal-article","created":{"date-parts":[[2017,2,10]],"date-time":"2017-02-10T17:15:32Z","timestamp":1486746932000},"page":"90-104","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Adaptive low-rank subspace learning with online optimization for robust visual tracking"],"prefix":"10.1016","volume":"88","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9554-0565","authenticated-orcid":false,"given":"Risheng","family":"Liu","sequence":"first","affiliation":[]},{"given":"Di","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yuzhuo","family":"Han","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Zhongxuan","family":"Luo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.neunet.2017.02.002_br000005","doi-asserted-by":"crossref","first-page":"2274","DOI":"10.1109\/TPAMI.2012.120","article-title":"Slic superpixels compared to state-of-the-art superpixel methods","volume":"34","author":"Achanta","year":"2012","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"8","key":"10.1016\/j.neunet.2017.02.002_br000010","doi-asserted-by":"crossref","first-page":"1064","DOI":"10.1109\/TPAMI.2004.53","article-title":"Support vector tracking","volume":"26","author":"Avidan","year":"2004","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2017.02.002_br000015","doi-asserted-by":"crossref","unstructured":"Babenko, B., Yang, M.-H., & Belongie, S. (2009). Visual Tracking with Online Multiple Instance Learning. In CVPR.","DOI":"10.1109\/CVPR.2009.5206737"},{"key":"10.1016\/j.neunet.2017.02.002_br000020","unstructured":"Bao, C., Wu, Y., Ling, H., & Ji, H. (2012). Real time robust \u21131 tracker using accelerated proximal gradient approach. In CVPR."},{"issue":"3","key":"10.1016\/j.neunet.2017.02.002_br000025","doi-asserted-by":"crossref","first-page":"11:1","DOI":"10.1145\/1970392.1970395","article-title":"Robust principal component analysis ?","volume":"58","author":"Cand\u00e8s","year":"2011","journal-title":"Journal of the ACM"},{"key":"10.1016\/j.neunet.2017.02.002_br000030","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1016\/j.neucom.2016.06.048","article-title":"Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble","volume":"214","author":"Chen","year":"2016","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neunet.2017.02.002_br000035","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/s11263-009-0275-4","article-title":"The pascal visual object classes (VOC) challenge","volume":"88","author":"Everingham","year":"2010","journal-title":"International Journal of Computer Vision"},{"key":"10.1016\/j.neunet.2017.02.002_br000040","doi-asserted-by":"crossref","unstructured":"Grabner, H., & Bischof, H. (2006). On-line boosting and vision. In CVPR.","DOI":"10.1109\/CVPR.2006.215"},{"key":"10.1016\/j.neunet.2017.02.002_br000045","doi-asserted-by":"crossref","unstructured":"Grabner, H., Grabner, M., & Bischof, H. (2006). Real-time tracking via on-line boosting. In BMVC, Vol. 1 (p. 6).","DOI":"10.5244\/C.20.6"},{"key":"10.1016\/j.neunet.2017.02.002_br000050","doi-asserted-by":"crossref","unstructured":"Hare, S., Saffari, A., & Torr, P. (2011). Struck: Structured output tracking with kernels. In ICCV (pp. 263\u2013270).","DOI":"10.1109\/ICCV.2011.6126251"},{"issue":"3","key":"10.1016\/j.neunet.2017.02.002_br000055","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1109\/TPAMI.2014.2345390","article-title":"High-speed tracking with kernelized correlation filters","volume":"37","author":"Henriques","year":"2015","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2017.02.002_br000060","doi-asserted-by":"crossref","unstructured":"Isard, M., & Blake, A. (1998). Condensation-conditional density propagation for visual tracking. In IJCV, Vol. 29 (pp. 5\u20138).","DOI":"10.1023\/A:1008078328650"},{"key":"10.1016\/j.neunet.2017.02.002_br000065","unstructured":"Jia, X., Lu, H., & Yang, M.-H. (2012). Visual tracking via adaptive structural local sparse appearance model. In CVPR (pp. 1822\u20131829)."},{"key":"10.1016\/j.neunet.2017.02.002_br000070","series-title":"Principal component analysis","author":"Jolliffe","year":"2002"},{"issue":"7","key":"10.1016\/j.neunet.2017.02.002_br000075","doi-asserted-by":"crossref","first-page":"1409","DOI":"10.1109\/TPAMI.2011.239","article-title":"Tracking-learning-detection","volume":"34","author":"Kalal","year":"2012","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2017.02.002_br000080","unstructured":"Kwon, J., & Lee, K. (2011). Tracking by sampling trackers. In ICCV (pp. 1195\u20131202)."},{"issue":"10","key":"10.1016\/j.neunet.2017.02.002_br000085","doi-asserted-by":"crossref","first-page":"1728","DOI":"10.1109\/TPAMI.2008.73","article-title":"Tracking in low frame rate video: A cascade particle filter with discriminative observers of different life spans","volume":"30","author":"Li","year":"2008","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"2","key":"10.1016\/j.neunet.2017.02.002_br000090","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1007\/s10994-014-5469-5","article-title":"Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning","volume":"99","author":"Lin","year":"2013","journal-title":"Machine Learning"},{"key":"10.1016\/j.neunet.2017.02.002_br000095","unstructured":"Lin, Z., Liu, R., & Su, Z. (2011). Linearized alternating direction method with adaptive penalty for low-rank representation. In NIPS."},{"issue":"3","key":"10.1016\/j.neunet.2017.02.002_br000100","doi-asserted-by":"crossref","DOI":"10.1117\/1.JEI.24.3.033012","article-title":"Robust visual tracking via l0 regularized local low-rank feature learning","volume":"24","author":"Liu","year":"2015","journal-title":"Journal of Electronic Imaging"},{"issue":"4","key":"10.1016\/j.neunet.2017.02.002_br000105","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1109\/MMUL.2014.49","article-title":"Latent subspace projection pursuit with online optimization for robust visual tracking","volume":"21","author":"Liu","year":"2014","journal-title":"IEEE MultiMedia"},{"key":"10.1016\/j.neunet.2017.02.002_br000110","unstructured":"Liu, R., Lin, Z., la Torre, F.D., & Su, Z. (2012). Fixed-rank representation for unsupervised visual learning. In CVPR."},{"key":"10.1016\/j.neunet.2017.02.002_br000115","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1016\/j.neucom.2014.03.046","article-title":"Linear time principal component pursuit and its extensions using \u21131 filtering","volume":"142","author":"Liu","year":"2014","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neunet.2017.02.002_br000120","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TPAMI.2012.88","article-title":"Robust recovery of subspace structures by low-rank representation","volume":"35","author":"Liu","year":"2013","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2017.02.002_br000125","unstructured":"Mei, X., & Ling, H. (2009). Robust visual tracking using \u21131 minimization. In ICCV."},{"key":"10.1016\/j.neunet.2017.02.002_br000130","first-page":"841","article-title":"On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes","volume":"14","author":"Ng","year":"2002","journal-title":"NIPS"},{"issue":"2","key":"10.1016\/j.neunet.2017.02.002_br000135","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1007\/s11263-014-0740-6","article-title":"Locally orderless tracking","volume":"111","author":"Oron","year":"2015","journal-title":"International Journal of Computer Vision"},{"issue":"1\u20133","key":"10.1016\/j.neunet.2017.02.002_br000140","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1007\/s11263-007-0075-7","article-title":"Incremental learning for robust visual tracking","volume":"77","author":"Ross","year":"2008","journal-title":"International Journal of Computer Vision"},{"key":"10.1016\/j.neunet.2017.02.002_br000145","doi-asserted-by":"crossref","unstructured":"Sevilla-Lara, L., & Learned-Miller, E. (2012). Distribution fields for tracking. In CVPR (pp. 1910\u20131917).","DOI":"10.1109\/CVPR.2012.6247891"},{"key":"10.1016\/j.neunet.2017.02.002_br000150","doi-asserted-by":"crossref","unstructured":"Sim, T., Baker, S., & Bsat, M. (2002). The CMU pose, illumination, and expression (PIE) database. In AFGR (pp. 46\u201351).","DOI":"10.1109\/AFGR.2002.1004130"},{"issue":"3","key":"10.1016\/j.neunet.2017.02.002_br000155","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","article-title":"A tutorial on support vector regression","volume":"14","author":"Smola","year":"2004","journal-title":"Statistics and Computing"},{"issue":"25","key":"10.1016\/j.neunet.2017.02.002_br000160","doi-asserted-by":"crossref","first-page":"1931","DOI":"10.1049\/el.2014.1911","article-title":"Robust visual tracking via online informative feature selection","volume":"50","author":"Song","year":"2014","journal-title":"Electronics Letters"},{"issue":"1","key":"10.1016\/j.neunet.2017.02.002_br000165","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1049\/el.2016.3011","article-title":"Robust visual tracking via self-similarity learning","volume":"53","author":"Song","year":"2017","journal-title":"Electronics Letters"},{"issue":"12","key":"10.1016\/j.neunet.2017.02.002_br000170","doi-asserted-by":"crossref","first-page":"2167","DOI":"10.1109\/TNNLS.2014.2306063","article-title":"Structure-constrained low-rank representation","volume":"25","author":"Tang","year":"2014","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neunet.2017.02.002_br000175","doi-asserted-by":"crossref","unstructured":"Wang, D., Liu, R., & Su, Z. (2015). Robust visual tracking via guided low-rank subspace learning. In ICIP.","DOI":"10.1109\/ICIP.2015.7364574"},{"issue":"1","key":"10.1016\/j.neunet.2017.02.002_br000180","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1109\/TIP.2012.2202677","article-title":"Online object tracking with sparse prototypes","volume":"22","author":"Wang","year":"2013","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neunet.2017.02.002_br000185","unstructured":"Wang, N., & Yeung, D.-Y. (2013). Learning a deep compact image representation for visual tracking. In NIPS (pp. 809\u2013817)."},{"issue":"2","key":"10.1016\/j.neunet.2017.02.002_br000190","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1109\/TPAMI.2008.79","article-title":"Robust face recognition via sparse representation","volume":"31","author":"Wright","year":"2009","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2017.02.002_br000195","doi-asserted-by":"crossref","unstructured":"Wu, Y., Lim, J., & Yang, M.-H. (2013). Online object tracking: A benchmark. In CVPR (pp. 2411\u20132418).","DOI":"10.1109\/CVPR.2013.312"},{"key":"10.1016\/j.neunet.2017.02.002_br000200","unstructured":"Wu, Y., Shen, B., & Ling, H. (2012). Online robust image alignment via iterative convex optimization. In CVPR (pp. 1808\u20131814)."},{"issue":"5","key":"10.1016\/j.neunet.2017.02.002_br000205","doi-asserted-by":"crossref","first-page":"3047","DOI":"10.1109\/TIT.2011.2173156","article-title":"Robust pca via outlier pursuit","volume":"58","author":"Xu","year":"2012","journal-title":"IEEE Transactions on Information Thoery"},{"issue":"4","key":"10.1016\/j.neunet.2017.02.002_br000210","doi-asserted-by":"crossref","first-page":"1639","DOI":"10.1109\/TIP.2014.2300823","article-title":"Robust superpixel tracking","volume":"23","author":"Yang","year":"2014","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neunet.2017.02.002_br000215","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.cviu.2016.02.003","article-title":"Robust object tracking by online Fisher discrimination boosting feature selection","volume":"153","author":"Yang","year":"2016","journal-title":"Computer Vision and Image Understanding"},{"key":"10.1016\/j.neunet.2017.02.002_br000220","doi-asserted-by":"crossref","unstructured":"Yang, C., Zhang, L., Lu, H., Ruan, X., & Yang, M.-H. (2013). Saliency detection via graph-based manifold ranking. In CVPR (pp. 3166\u20133173).","DOI":"10.1109\/CVPR.2013.407"},{"key":"10.1016\/j.neunet.2017.02.002_br000225","doi-asserted-by":"crossref","unstructured":"Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012a). Low-rank sparse learning for robust visual tracking. In ECCV (pp. 470\u2013484).","DOI":"10.1007\/978-3-642-33783-3_34"},{"key":"10.1016\/j.neunet.2017.02.002_br000230","unstructured":"Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012b). Robust visual tracking via multi-task sparse learning. In CVPR (pp. 2042\u20132049)."},{"key":"10.1016\/j.neunet.2017.02.002_br000235","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.neucom.2013.10.020","article-title":"Robust visual tracking via incremental low-rank features learning","volume":"131","author":"Zhang","year":"2014","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.neunet.2017.02.002_br000240","first-page":"1779","article-title":"Robust visual tracking via convolutional networks without training","volume":"25","author":"Zhang","year":"2016","journal-title":"IEEE Transactions on Image Processing"},{"issue":"10","key":"10.1016\/j.neunet.2017.02.002_br000245","doi-asserted-by":"crossref","first-page":"2002","DOI":"10.1109\/TPAMI.2014.2315808","article-title":"Fast compressive tracking","volume":"36","author":"Zhang","year":"2014","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2017.02.002_br000250","unstructured":"Zhang, K., Zhang, L., & Yang, M.-H. (0000). Fast compressive tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence."},{"key":"10.1016\/j.neunet.2017.02.002_br000255","series-title":"ECCV","first-page":"864","article-title":"Real-time compressive tracking","author":"Zhang","year":"2012"},{"key":"10.1016\/j.neunet.2017.02.002_br000260","first-page":"169","article-title":"Ranking on data manifolds","volume":"16","author":"Zhou","year":"2004","journal-title":"NIPS"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608017300278?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608017300278?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,9]],"date-time":"2019-08-09T18:38:06Z","timestamp":1565375886000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608017300278"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,4]]},"references-count":52,"alternative-id":["S0893608017300278"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2017.02.002","relation":{},"ISSN":["0893-6080"],"issn-type":[{"value":"0893-6080","type":"print"}],"subject":[],"published":{"date-parts":[[2017,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adaptive low-rank subspace learning with online optimization for robust visual tracking","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2017.02.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}