{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,5]],"date-time":"2024-07-05T09:59:55Z","timestamp":1720173595394},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,4,1]],"date-time":"2017-04-01T00:00:00Z","timestamp":1491004800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Basic Research Program of China","doi-asserted-by":"crossref","award":["2012CB316400"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61370163","61332011"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2017,4]]},"DOI":"10.1016\/j.neunet.2017.01.001","type":"journal-article","created":{"date-parts":[[2017,1,16]],"date-time":"2017-01-16T10:36:41Z","timestamp":1484563001000},"page":"1-8","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":34,"special_numbering":"C","title":["Orthogonal self-guided similarity preserving projection for classification and clustering"],"prefix":"10.1016","volume":"88","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8440-1765","authenticated-orcid":false,"given":"Xiaozhao","family":"Fang","sequence":"first","affiliation":[]},{"given":"Yong","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Xuelong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhihui","family":"Lai","sequence":"additional","affiliation":[]},{"given":"Shaohua","family":"Teng","sequence":"additional","affiliation":[]},{"given":"Lunke","family":"Fei","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"20","key":"10.1016\/j.neunet.2017.01.001_br000005","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.ins.2016.01.101","article-title":"A survey on soft subspace clustering","volume":"348","author":"Deng","year":"2016","journal-title":"Information Sciences"},{"issue":"11","key":"10.1016\/j.neunet.2017.01.001_br000010","doi-asserted-by":"crossref","first-page":"2765","DOI":"10.1109\/TPAMI.2013.57","article-title":"Sparse subspace clustering: Algorithm, theory, and applications","volume":"35","author":"Elhamifar","year":"2013","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neunet.2017.01.001_br000015","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/j.neucom.2013.08.040","article-title":"Locality and similarity preserving embedding for feature selection","volume":"128","author":"Fang","year":"2014","journal-title":"Neurocomputing"},{"issue":"9","key":"10.1016\/j.neunet.2017.01.001_br000020","doi-asserted-by":"crossref","first-page":"2760","DOI":"10.1109\/TIP.2015.2425545","article-title":"Learning a nonnegative sparse graph for linear regression","volume":"24","author":"Fang","year":"2015","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neunet.2017.01.001_br000025","doi-asserted-by":"crossref","unstructured":"Fang, X. Z., Xu, Y., Zhang, Z., Lai, Z. H., & Shen, L. L. (2015). Orthogonal self-guided similarity preserving projections. 2015, ICIP.","DOI":"10.1109\/ICIP.2015.7350817"},{"issue":"8","key":"10.1016\/j.neunet.2017.01.001_br000030","doi-asserted-by":"crossref","first-page":"1538","DOI":"10.1109\/TNNLS.2013.2294492","article-title":"Modified principal component analysis: An integration of multiple similarity subspace models","volume":"25","author":"Fan","year":"2014","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"key":"10.1016\/j.neunet.2017.01.001_br000035","unstructured":"He, X., Cai, D., Yan, S., & Zhang, H. (2005). Neighborhood preserving embedding. 2015, ICCV, 2 (pp. 1208\u20131213)."},{"key":"10.1016\/j.neunet.2017.01.001_br000040","doi-asserted-by":"crossref","unstructured":"He, R., Zheng, W., Hu, B., & Kong, W. (2011). Non-negative sparse coding for discriminative semi-supervised learning. 2011, CVPR (pp. 2849\u20132856).","DOI":"10.1109\/CVPR.2011.5995487"},{"issue":"7","key":"10.1016\/j.neunet.2017.01.001_br000045","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1142\/S0218001499000604","article-title":"Radial basis probabilistic neural networks: Model and application","volume":"13","author":"Huang","year":"1999","journal-title":"International Journal of Pattern Recognition and Artificial Intelligence"},{"issue":"12","key":"10.1016\/j.neunet.2017.01.001_br000050","doi-asserted-by":"crossref","first-page":"2099","DOI":"10.1109\/TNN.2008.2004370","article-title":"A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks","volume":"19","author":"Huang","year":"2008","journal-title":"IEEE Transactions on Neural Networks"},{"issue":"5","key":"10.1016\/j.neunet.2017.01.001_br000055","doi-asserted-by":"crossref","first-page":"1489","DOI":"10.1109\/TSMCB.2012.2192475","article-title":"A general CPL-AdS methodology for fixing dynamic parameters in dual environments","volume":"42","author":"Huang","year":"2012","journal-title":"IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)"},{"key":"10.1016\/j.neunet.2017.01.001_br000060","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.neunet.2014.10.006","article-title":"Max-min distance nonnegative matrix factorization","volume":"61","author":"Jing-Yan Wang","year":"2015","journal-title":"Neural Networks"},{"issue":"12","key":"10.1016\/j.neunet.2017.01.001_br000065","doi-asserted-by":"crossref","first-page":"1948","DOI":"10.1109\/TNNLS.2012.2217154","article-title":"Sparse approximation to the eigensubspace for discrimination","volume":"23","author":"Lai","year":"2012","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"4","key":"10.1016\/j.neunet.2017.01.001_br000070","doi-asserted-by":"crossref","first-page":"723","DOI":"10.1109\/TNNLS.2015.2422994","article-title":"Approximate orthogonal sparse embedding for dimensionality reduction","volume":"27","author":"Lai","year":"2015","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"10","key":"10.1016\/j.neunet.2017.01.001_br000075","doi-asserted-by":"crossref","first-page":"1942","DOI":"10.1109\/TNNLS.2013.2297381","article-title":"Multilinear sparse principal component analysis","volume":"25","author":"Lai","year":"2014","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"10","key":"10.1016\/j.neunet.2017.01.001_br000080","doi-asserted-by":"crossref","first-page":"3904","DOI":"10.1109\/TIP.2013.2264678","article-title":"Sparse tensor discriminant analysis","volume":"22","author":"Lai","year":"2013","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neunet.2017.01.001_br000085","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/j.neunet.2012.05.003","article-title":"Online learning and generalization of parts-based image representations by non-negative sparse autoencoders","volume":"33","author":"Lemme","year":"2012","journal-title":"Neural Networks"},{"issue":"4","key":"10.1016\/j.neunet.2017.01.001_br000090","doi-asserted-by":"crossref","first-page":"1170","DOI":"10.1109\/TSMCB.2009.2035629","article-title":"L1-norm-based 2dpca","volume":"40","author":"Li","year":"2010","journal-title":"IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)"},{"key":"10.1016\/j.neunet.2017.01.001_br000095","unstructured":"Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. 2010, ICML (pp. 663\u2013670)."},{"key":"10.1016\/j.neunet.2017.01.001_br000100","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.sigpro.2014.08.002","article-title":"Multiview Hessian regularized logistic regression for action recognition","volume":"110","author":"Liu","year":"2015","journal-title":"Signal Processing"},{"issue":"8","key":"10.1016\/j.neunet.2017.01.001_br000105","doi-asserted-by":"crossref","first-page":"1900","DOI":"10.1109\/TCYB.2015.2457611","article-title":"Low-rank preserving projections","volume":"46","author":"Lu","year":"2016","journal-title":"IEEE Transactions on Cybernetics"},{"issue":"10","key":"10.1016\/j.neunet.2017.01.001_br000110","doi-asserted-by":"crossref","first-page":"2663","DOI":"10.1109\/TSP.2015.2417491","article-title":"Subspace learning and imputation for streaming big data matrices and tensors","volume":"63","author":"Mardani","year":"2015","journal-title":"IEEE Transactions on Signal Processing"},{"key":"10.1016\/j.neunet.2017.01.001_br000115","unstructured":"Mikhail, B., & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. 2001, NIPS, 14 (pp. 585\u2013591)."},{"key":"10.1016\/j.neunet.2017.01.001_br000120","doi-asserted-by":"crossref","unstructured":"Nie, F. P., Wang, X. Q., & Huang, H. (2014). Clustering and projected clustering with adaptive neighbors. 2014, KDD (pp. 977\u2013986).","DOI":"10.1145\/2623330.2623726"},{"issue":"10","key":"10.1016\/j.neunet.2017.01.001_br000125","first-page":"1738","article-title":"Locality preserving projections","volume":"44","author":"Niyogi","year":"2014","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.neunet.2017.01.001_br000130","doi-asserted-by":"crossref","unstructured":"Patel, V., Nguyen, H., & Vidal, R. (2013). Latent space sparse subspace clustering. 2013, ICCV (pp. 225\u2013232).","DOI":"10.1109\/ICCV.2013.35"},{"issue":"1","key":"10.1016\/j.neunet.2017.01.001_br000135","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.patcog.2009.05.005","article-title":"Sparsity preserving projections with applications to face recognition","volume":"43","author":"Qiao","year":"2010","journal-title":"Pattern Recognition"},{"issue":"5500","key":"10.1016\/j.neunet.2017.01.001_br000140","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1126\/science.290.5500.2323","article-title":"Nonlinear dimensionality reduction by locally linear embedding","volume":"290","author":"Roweis","year":"2010","journal-title":"Science"},{"issue":"4","key":"10.1016\/j.neunet.2017.01.001_br000145","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1109\/TMM.2013.2238909","article-title":"Hessian regularized support vector machines for mobile image annotation on the cloud","volume":"15","author":"Tao","year":"2013","journal-title":"IEEE Transactions on Multimedia"},{"issue":"11","key":"10.1016\/j.neunet.2017.01.001_br000150","doi-asserted-by":"crossref","first-page":"1515","DOI":"10.1109\/TKDE.2009.21","article-title":"A novel density-based clustering framework by using level set method","volume":"21","author":"Wang","year":"2009","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"issue":"3","key":"10.1016\/j.neunet.2017.01.001_br000155","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.patcog.2009.08.002","article-title":"An efficient local Chan-Vese model for image segmentation","volume":"43","author":"Wang","year":"2010","journal-title":"Pattern Recognition"},{"issue":"5","key":"10.1016\/j.neunet.2017.01.001_br000160","doi-asserted-by":"crossref","first-page":"1108","DOI":"10.1109\/TCYB.2014.2341575","article-title":"Robust 2DPCA with non-greedy L1-norm maximization for image analysis","volume":"45","author":"Wang","year":"2015","journal-title":"IEEE Transactions on Cybernetics"},{"key":"10.1016\/j.neunet.2017.01.001_br000165","doi-asserted-by":"crossref","unstructured":"Wu, M., Yu, K., Yu, S., & Scholkopf, B. (2007). Local learning projections. 2007, ICML, 16 (pp. 1039\u20131046).","DOI":"10.1145\/1273496.1273627"},{"key":"10.1016\/j.neunet.2017.01.001_br000170","doi-asserted-by":"crossref","unstructured":"Yan, S., & Wang, H. (2009). Semi-supervised learning by sparse representation. 2009, SDM (pp. 792\u2013801).","DOI":"10.1137\/1.9781611972795.68"},{"issue":"7","key":"10.1016\/j.neunet.2017.01.001_br000175","doi-asserted-by":"crossref","first-page":"1023","DOI":"10.1109\/TNNLS.2013.2249088","article-title":"Sparse representation classifier steered discriminative projection with applications to face recognition","volume":"24","author":"Yang","year":"2013","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"},{"issue":"1","key":"10.1016\/j.neunet.2017.01.001_br000180","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1137\/090777761","article-title":"Alternating direction algorithms for l1-problems in compressive sensing","volume":"33","author":"Yang","year":"2011","journal-title":"SIAM Journal on Scientific Computing"},{"key":"10.1016\/j.neunet.2017.01.001_br000185","doi-asserted-by":"crossref","first-page":"1709","DOI":"10.1016\/j.patcog.2013.10.018","article-title":"Linear reconstruction measure steered nearest neighbor classification framework","volume":"47","author":"Zhang","year":"2014","journal-title":"Pattern Recognition"},{"issue":"4","key":"10.1016\/j.neunet.2017.01.001_br000190","doi-asserted-by":"crossref","first-page":"1684","DOI":"10.1109\/TSP.2011.2179539","article-title":"Kernel sparse representation-based classifier","volume":"60","author":"Zhang","year":"2012","journal-title":"IEEE Transactions on Signal Processing"},{"issue":"5","key":"10.1016\/j.neunet.2017.01.001_br000195","doi-asserted-by":"crossref","first-page":"1327","DOI":"10.1109\/TIP.2010.2090535","article-title":"Graph regularized sparse coding for image representation","volume":"20","author":"Zheng","year":"2011","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neunet.2017.01.001_br000200","unstructured":"Zhu, X., Ghahramani, Z., & Lafferty, J. (2013). Semi-supervised learning using gaussian fields and harmonic functions. 2013, ICML (pp. 912\u2013919)."},{"key":"10.1016\/j.neunet.2017.01.001_br000205","unstructured":"Zhuang, L., Gao, H., Lin, Z., Ma, Y., Zhang, X., & Yu, N. (2012). Non-negative low rank and sparse graph for semisupervised learning. 2012, CVPR (pp. 2328\u20132335)."}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608017300011?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608017300011?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,4,27]],"date-time":"2019-04-27T12:43:09Z","timestamp":1556368989000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608017300011"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,4]]},"references-count":41,"alternative-id":["S0893608017300011"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2017.01.001","relation":{},"ISSN":["0893-6080"],"issn-type":[{"value":"0893-6080","type":"print"}],"subject":[],"published":{"date-parts":[[2017,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Orthogonal self-guided similarity preserving projection for classification and clustering","name":"articletitle","label":"Article Title"},{"value":"Neural Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neunet.2017.01.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}