{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T11:09:04Z","timestamp":1743160144664},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2013,8,1]],"date-time":"2013-08-01T00:00:00Z","timestamp":1375315200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Neural Networks"],"published-print":{"date-parts":[[2013,8]]},"DOI":"10.1016\/j.neunet.2013.03.001","type":"journal-article","created":{"date-parts":[[2013,3,14]],"date-time":"2013-03-14T05:45:45Z","timestamp":1363239945000},"page":"44-50","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Convergence rate of the semi-supervised greedy algorithm"],"prefix":"10.1016","volume":"44","author":[{"given":"Hong","family":"Chen","sequence":"first","affiliation":[]},{"given":"Yicong","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Yuan Yan","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Luoqing","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhibin","family":"Pan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neunet.2013.03.001_br000005","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1214\/009053607000000631","article-title":"Approximation and learning by greedy algorithm","volume":"36","author":"Barron","year":"2008","journal-title":"Annals of Statistics"},{"key":"10.1016\/j.neunet.2013.03.001_br000010","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1023\/B:MACH.0000033120.25363.1e","article-title":"Semi-supervised learning on Riemannian manifolds","volume":"56","author":"Belkin","year":"2004","journal-title":"Machine Learning"},{"key":"10.1016\/j.neunet.2013.03.001_br000015","first-page":"2399","article-title":"Manifold regularizaion: a geometric framework for learning from labeled and unlabeled examples","volume":"7","author":"Belkin","year":"2006","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neunet.2013.03.001_br000020","doi-asserted-by":"crossref","unstructured":"Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In 11th annual conference on computational learning theory (pp. 92\u2013100).","DOI":"10.1145\/279943.279962"},{"year":"2006","series-title":"Semi-supervised learning","author":"Chapelle","key":"10.1016\/j.neunet.2013.03.001_br000025"},{"key":"10.1016\/j.neunet.2013.03.001_br000030","doi-asserted-by":"crossref","first-page":"1594","DOI":"10.1109\/TNN.2009.2027320","article-title":"Semi-supervised multi-category classification with imperfect model","volume":"20","author":"Chen","year":"2009","journal-title":"IEEE Transactions on Neural Networks"},{"key":"10.1016\/j.neunet.2013.03.001_br000035","doi-asserted-by":"crossref","first-page":"1960","DOI":"10.1016\/j.ins.2009.01.007","article-title":"Error bounds of semi-supervised multi-graph regularized classifiers","volume":"179","author":"Chen","year":"2009","journal-title":"Information Sciences"},{"key":"10.1016\/j.neunet.2013.03.001_br000040","doi-asserted-by":"crossref","first-page":"812","DOI":"10.1016\/j.neunet.2010.06.001","article-title":"Semi-supervised learning based on high density regions estimation","volume":"23","author":"Chen","year":"2010","journal-title":"Neural Networks"},{"key":"10.1016\/j.neunet.2013.03.001_br000045","first-page":"1143","article-title":"Support vector machine soft margin classifiers: error analysis","volume":"5","author":"Chen","year":"2004","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neunet.2013.03.001_br000050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1090\/S0273-0979-01-00923-5","article-title":"On the mathematical foundations of learning","volume":"39","author":"Cucker","year":"2002","journal-title":"Bulletin of the American Mathematical Society"},{"year":"2007","series-title":"Learning theory: an approximation theory viewpoint","author":"Cucker","key":"10.1016\/j.neunet.2013.03.001_br000055"},{"key":"10.1016\/j.neunet.2013.03.001_br000060","doi-asserted-by":"crossref","first-page":"1777","DOI":"10.1016\/j.patcog.2011.02.013","article-title":"Sparse regualrization for semi-supervised classification","volume":"44","author":"Fan","year":"2011","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neunet.2013.03.001_br000065","first-page":"1489","article-title":"On the effectiveness of Laplacian normalization for graph-based semi-supervised learning","volume":"8","author":"Johnson","year":"2007","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neunet.2013.03.001_br000070","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1109\/TIT.2007.911294","article-title":"Graph-based semi-supervised learning and spectral kernel design","volume":"54","author":"Johnson","year":"2008","journal-title":"IEEE Transactions on Information Theory"},{"key":"10.1016\/j.neunet.2013.03.001_br000075","first-page":"781","article-title":"Some greedy learning algorithms for sparse regression and classification with Mercer kernels","volume":"3","author":"Nair","year":"2007","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neunet.2013.03.001_br000080","first-page":"1369","article-title":"Generalization error bounds in semi-supervised classification under the cluster assumption","volume":"8","author":"Rigollet","year":"2007","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neunet.2013.03.001_br000085","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/j.acha.2011.01.001","article-title":"Concentration estimates for learning with \u21131-regularizer and data dependent hypothesis spaces","volume":"31","author":"Shi","year":"2011","journal-title":"Applied and Computational Harmonic Analysis"},{"key":"10.1016\/j.neunet.2013.03.001_br000090","unstructured":"Sindhwani, V., Niyogi, P., & Belkin, M. (2005). A co-regularization approach to semi-supervised learning with multiple views. In Proceedings of the workshop on learning with multiple views, 22nd ICML."},{"key":"10.1016\/j.neunet.2013.03.001_br000095","doi-asserted-by":"crossref","unstructured":"Sindhwani, V., & Rosenberg, D. (2008). An RKHS for multi-view learning and manifold co-regularization. In Proceeding of the 25th ICML (pp. 976\u2013983).","DOI":"10.1145\/1390156.1390279"},{"key":"10.1016\/j.neunet.2013.03.001_br000100","first-page":"2423","article-title":"Sparse semi-supervised learning using conjugate functions","volume":"11","author":"Sun","year":"2010","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neunet.2013.03.001_br000105","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.acha.2010.04.001","article-title":"Least square regression with indefinite kernels and coefficient regularization","volume":"30","author":"Sun","year":"2011","journal-title":"Applied and Computational Harmonic Analysis"},{"key":"10.1016\/j.neunet.2013.03.001_br000110","series-title":"Advances in NIPS 19","first-page":"1401","article-title":"Large-scale sparsified manifold regularization","author":"Tsang","year":"2007"},{"key":"10.1016\/j.neunet.2013.03.001_br000115","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.jco.2006.06.007","article-title":"Multi-kernel regularized classifiers","volume":"23","author":"Wu","year":"2007","journal-title":"Journal of Complexity"},{"key":"10.1016\/j.neunet.2013.03.001_br000120","doi-asserted-by":"crossref","first-page":"2896","DOI":"10.1016\/j.camwa.2008.09.014","article-title":"Learning with sample dependent hypothesis spaces","volume":"56","author":"Wu","year":"2008","journal-title":"Computers & Mathematics with Applications"},{"key":"10.1016\/j.neunet.2013.03.001_br000125","doi-asserted-by":"crossref","first-page":"1821","DOI":"10.11650\/twjm\/1500406018","article-title":"Learning by nonsymmetric kernel with data dependent spaces and \u21131-regularizer","volume":"14","author":"Xiao","year":"2010","journal-title":"Taiwanese Journal of Mathematics"},{"key":"10.1016\/j.neunet.2013.03.001_br000130","doi-asserted-by":"crossref","first-page":"3013","DOI":"10.1162\/089976602760805395","article-title":"Approximation bounds for some sparse kernel regression algorithms","volume":"14","author":"Zhang","year":"2002","journal-title":"Neural Computation"},{"key":"10.1016\/j.neunet.2013.03.001_br000135","first-page":"555","article-title":"On the consistency of feature selection using greedy least squres regression","volume":"10","author":"Zhang","year":"2009","journal-title":"Journal of Machine Learning Research"},{"year":"2005","series-title":"Semi-supervised learning literature survey. Technical report 1530. Computer Sciences. University of Wisconsin\u2013Madison","author":"Zhu","key":"10.1016\/j.neunet.2013.03.001_br000140"},{"key":"10.1016\/j.neunet.2013.03.001_br000145","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1007\/s10994-009-5104-z","article-title":"The generalization performance of ERM algorithm with strongly mixing observations","volume":"75","author":"Zou","year":"2009","journal-title":"Machine Learning"}],"container-title":["Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608013000671?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0893608013000671?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,7,10]],"date-time":"2019-07-10T23:58:20Z","timestamp":1562803100000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0893608013000671"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013,8]]},"references-count":29,"alternative-id":["S0893608013000671"],"URL":"https:\/\/doi.org\/10.1016\/j.neunet.2013.03.001","relation":{},"ISSN":["0893-6080"],"issn-type":[{"type":"print","value":"0893-6080"}],"subject":[],"published":{"date-parts":[[2013,8]]}}}