{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T00:33:38Z","timestamp":1725582818298},"reference-count":86,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012326","name":"International Science and Technology Cooperation Programme","doi-asserted-by":"publisher","award":["2015DFR10830"],"id":[{"id":"10.13039\/501100012326","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.neucom.2024.128413","type":"journal-article","created":{"date-parts":[[2024,8,17]],"date-time":"2024-08-17T15:45:02Z","timestamp":1723909502000},"page":"128413","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["HQ-Net: A heatmap-based query backbone for point cloud understanding"],"prefix":"10.1016","volume":"606","author":[{"given":"Jun","family":"Li","sequence":"first","affiliation":[]},{"given":"Shangwei","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Luhan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Shaokun","family":"Han","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.neucom.2024.128413_b1","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.1177\/0278364913491297","article-title":"Vision meets robotics: The kitti dataset","volume":"32","author":"Geiger","year":"2013","journal-title":"Int. J. Robotics Res."},{"year":"2018","series-title":"Pointsift: A sift-like network module for 3d point cloud semantic segmentation","author":"Jiang","key":"10.1016\/j.neucom.2024.128413_b2"},{"key":"10.1016\/j.neucom.2024.128413_b3","series-title":"2008 7th IEEE\/ACM International Symposium on Mixed and Augmented Reality","first-page":"117","article-title":"Multiple 3d object tracking for augmented reality","author":"Park","year":"2008"},{"key":"10.1016\/j.neucom.2024.128413_b4","doi-asserted-by":"crossref","first-page":"94363","DOI":"10.1109\/ACCESS.2022.3204652","article-title":"Modeling fabric-type actuator using point clouds by deep learning","volume":"10","author":"Peng","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2024.128413_b5","doi-asserted-by":"crossref","DOI":"10.1109\/TCSVT.2024.3358850","article-title":"Pedestrian 3D shape understanding for person re-identification via multi-view learning","author":"Yu","year":"2024","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.neucom.2024.128413_b6","article-title":"3D person re-identification based on global semantic guidance and local feature aggregation","author":"Wang","year":"2023","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.neucom.2024.128413_b7","doi-asserted-by":"crossref","unstructured":"A.H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, O. Beijbom, Pointpillars: Fast encoders for object detection from point clouds, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12697\u201312705.","DOI":"10.1109\/CVPR.2019.01298"},{"key":"10.1016\/j.neucom.2024.128413_b8","doi-asserted-by":"crossref","unstructured":"Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, A. Markham, Randla-net: Efficient semantic segmentation of large-scale point clouds, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11108\u201311117.","DOI":"10.1109\/CVPR42600.2020.01112"},{"key":"10.1016\/j.neucom.2024.128413_b9","first-page":"33330","article-title":"Point transformer v2: Grouped vector attention and partition-based pooling","volume":"35","author":"Wu","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2023","series-title":"Point transformer v3: Simpler, faster, stronger","author":"Wu","key":"10.1016\/j.neucom.2024.128413_b10"},{"key":"10.1016\/j.neucom.2024.128413_b11","doi-asserted-by":"crossref","unstructured":"H. Zhao, L. Jiang, J. Jia, P.H. Torr, V. Koltun, Point transformer, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 16259\u201316268.","DOI":"10.1109\/ICCV48922.2021.01595"},{"key":"10.1016\/j.neucom.2024.128413_b12","doi-asserted-by":"crossref","first-page":"53471","DOI":"10.1109\/ACCESS.2020.2981400","article-title":"Kalman filter finite element method for real-time soft tissue modeling","volume":"8","author":"Xie","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2024.128413_b13","series-title":"Soft Robotics: Trends, Applications and Challenges: Proceedings of the Soft Robotics Week","first-page":"103","article-title":"Soft robot modeling, simulation and control in real-time","author":"Duriez","year":"2017"},{"key":"10.1016\/j.neucom.2024.128413_b14","series-title":"2024 IEEE\/SICE International Symposium on System Integration","first-page":"1387","article-title":"Funabot-finger cot: Bio-inspired worm robot for peristaltic wave locomotion and tubular structure climbing","author":"Sato","year":"2024"},{"issue":"1","key":"10.1016\/j.neucom.2024.128413_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.birob.2024.100146","article-title":"Controlling a peristaltic robot inspired by inchworms","volume":"4","author":"Peng","year":"2024","journal-title":"Biomim. Intell. Robotics"},{"key":"10.1016\/j.neucom.2024.128413_b16","doi-asserted-by":"crossref","unstructured":"H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller, Multi-view convolutional neural networks for 3d shape recognition, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 945\u2013953.","DOI":"10.1109\/ICCV.2015.114"},{"key":"10.1016\/j.neucom.2024.128413_b17","doi-asserted-by":"crossref","unstructured":"X. Wei, R. Yu, J. Sun, View-gcn: View-based graph convolutional network for 3d shape analysis, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1850\u20131859.","DOI":"10.1109\/CVPR42600.2020.00192"},{"key":"10.1016\/j.neucom.2024.128413_b18","doi-asserted-by":"crossref","unstructured":"B. Graham, M. Engelcke, L. Van Der Maaten, 3d semantic segmentation with submanifold sparse convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9224\u20139232.","DOI":"10.1109\/CVPR.2018.00961"},{"issue":"10","key":"10.1016\/j.neucom.2024.128413_b19","doi-asserted-by":"crossref","first-page":"3337","DOI":"10.3390\/s18103337","article-title":"Second: Sparsely embedded convolutional detection","volume":"18","author":"Yan","year":"2018","journal-title":"Sensors"},{"key":"10.1016\/j.neucom.2024.128413_b20","doi-asserted-by":"crossref","unstructured":"Y. Zhou, O. Tuzel, Voxelnet: End-to-end learning for point cloud based 3d object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4490\u20134499.","DOI":"10.1109\/CVPR.2018.00472"},{"key":"10.1016\/j.neucom.2024.128413_b21","unstructured":"Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao, 3d shapenets: A deep representation for volumetric shapes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1912\u20131920."},{"key":"10.1016\/j.neucom.2024.128413_b22","article-title":"Pointcnn: Convolution on x-transformed points","volume":"31","author":"Li","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2024.128413_b23","doi-asserted-by":"crossref","unstructured":"J. Mao, X. Wang, H. Li, Interpolated convolutional networks for 3d point cloud understanding, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 1578\u20131587.","DOI":"10.1109\/ICCV.2019.00166"},{"key":"10.1016\/j.neucom.2024.128413_b24","doi-asserted-by":"crossref","unstructured":"M. Xu, R. Ding, H. Zhao, X. Qi, Paconv: Position adaptive convolution with dynamic kernel assembling on point clouds, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3173\u20133182.","DOI":"10.1109\/CVPR46437.2021.00319"},{"key":"10.1016\/j.neucom.2024.128413_b25","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s41095-021-0229-5","article-title":"Pct: Point cloud transformer","volume":"7","author":"Guo","year":"2021","journal-title":"Comput. Vis. Media"},{"issue":"12","key":"10.1016\/j.neucom.2024.128413_b26","doi-asserted-by":"crossref","first-page":"4338","DOI":"10.1109\/TPAMI.2020.3005434","article-title":"Deep learning for 3d point clouds: A survey","volume":"43","author":"Guo","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"year":"2015","series-title":"Sparse 3D convolutional neural networks","author":"Graham","key":"10.1016\/j.neucom.2024.128413_b27"},{"key":"10.1016\/j.neucom.2024.128413_b28","unstructured":"C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 652\u2013660."},{"key":"10.1016\/j.neucom.2024.128413_b29","article-title":"Pointnet++: Deep hierarchical feature learning on point sets in a metric space","volume":"30","author":"Qi","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2024.128413_b30","article-title":"Dual transformer for point cloud analysis","author":"Han","year":"2022","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.neucom.2024.128413_b31","doi-asserted-by":"crossref","DOI":"10.1109\/TSC.2023.3325302","article-title":"MHRR: MOOCs recommender service with meta hierarchical reinforced ranking","author":"Li","year":"2023","journal-title":"IEEE Trans. Serv. Comput."},{"key":"10.1016\/j.neucom.2024.128413_b32","doi-asserted-by":"crossref","unstructured":"H. Thomas, C.R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, L.J. Guibas, Kpconv: Flexible and deformable convolution for point clouds, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 6411\u20136420.","DOI":"10.1109\/ICCV.2019.00651"},{"issue":"9","key":"10.1016\/j.neucom.2024.128413_b33","doi-asserted-by":"crossref","first-page":"1305","DOI":"10.1109\/83.623193","article-title":"The farthest point strategy for progressive image sampling","volume":"6","author":"Eldar","year":"1997","journal-title":"IEEE Trans. Image Process."},{"year":"2003","series-title":"Fast Marching Farthest Point Sampling","author":"Moenning","key":"10.1016\/j.neucom.2024.128413_b34"},{"key":"10.1016\/j.neucom.2024.128413_b35","doi-asserted-by":"crossref","unstructured":"O. Dovrat, I. Lang, S. Avidan, Learning to sample, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2760\u20132769.","DOI":"10.1109\/CVPR.2019.00287"},{"key":"10.1016\/j.neucom.2024.128413_b36","doi-asserted-by":"crossref","unstructured":"I. Lang, A. Manor, S. Avidan, Samplenet: Differentiable point cloud sampling, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 7578\u20137588.","DOI":"10.1109\/CVPR42600.2020.00760"},{"key":"10.1016\/j.neucom.2024.128413_b37","doi-asserted-by":"crossref","unstructured":"K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, Q. Tian, Centernet: Keypoint triplets for object detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 6569\u20136578.","DOI":"10.1109\/ICCV.2019.00667"},{"key":"10.1016\/j.neucom.2024.128413_b38","doi-asserted-by":"crossref","unstructured":"T. Yin, X. Zhou, P. Krahenbuhl, Center-based 3d object detection and tracking, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11784\u201311793.","DOI":"10.1109\/CVPR46437.2021.01161"},{"key":"10.1016\/j.neucom.2024.128413_b39","series-title":"Asian Conference on Computer Vision","first-page":"105","article-title":"Flex-convolution: Million-scale point-cloud learning beyond grid-worlds","author":"Groh","year":"2018"},{"key":"10.1016\/j.neucom.2024.128413_b40","doi-asserted-by":"crossref","unstructured":"Y. Shen, C. Feng, Y. Yang, D. Tian, Mining point cloud local structures by kernel correlation and graph pooling, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4548\u20134557.","DOI":"10.1109\/CVPR.2018.00478"},{"key":"10.1016\/j.neucom.2024.128413_b41","doi-asserted-by":"crossref","unstructured":"E. Nezhadarya, E. Taghavi, R. Razani, B. Liu, J. Luo, Adaptive hierarchical down-sampling for point cloud classification, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12956\u201312964.","DOI":"10.1109\/CVPR42600.2020.01297"},{"key":"10.1016\/j.neucom.2024.128413_b42","doi-asserted-by":"crossref","unstructured":"S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, H. Li, Pv-rcnn: Point-voxel feature set abstraction for 3d object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 10529\u201310538.","DOI":"10.1109\/CVPR42600.2020.01054"},{"key":"10.1016\/j.neucom.2024.128413_b43","doi-asserted-by":"crossref","unstructured":"K. Mo, S. Zhu, A.X. Chang, L. Yi, S. Tripathi, L.J. Guibas, H. Su, Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 909\u2013918.","DOI":"10.1109\/CVPR.2019.00100"},{"key":"10.1016\/j.neucom.2024.128413_b44","doi-asserted-by":"crossref","unstructured":"G. Riegler, A. Osman Ulusoy, A. Geiger, Octnet: Learning deep 3d representations at high resolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3577\u20133586.","DOI":"10.1109\/CVPR.2017.701"},{"key":"10.1016\/j.neucom.2024.128413_b45","doi-asserted-by":"crossref","unstructured":"W. Wu, Z. Qi, L. Fuxin, Pointconv: Deep convolutional networks on 3d point clouds, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9621\u20139630.","DOI":"10.1109\/CVPR.2019.00985"},{"key":"10.1016\/j.neucom.2024.128413_b46","first-page":"1","article-title":"Learning discriminative features by covering local geometric space for point cloud analysis","volume":"60","author":"Wang","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"12","key":"10.1016\/j.neucom.2024.128413_b47","doi-asserted-by":"crossref","first-page":"12542","DOI":"10.1109\/TKDE.2023.3270750","article-title":"Coltr: Semi-supervised learning to rank with co-training and over-parameterization for web search","volume":"35","author":"Li","year":"2023","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.neucom.2024.128413_b48","series-title":"2023 IEEE International Conference on Data Mining","first-page":"339","article-title":"Mpgraf: a modular and pre-trained graphformer for learning to rank at web-scale","author":"Li","year":"2023"},{"key":"10.1016\/j.neucom.2024.128413_b49","series-title":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"302","article-title":"Meta hierarchical reinforced learning to rank for recommendation: a comprehensive study in moocs","author":"Li","year":"2022"},{"key":"10.1016\/j.neucom.2024.128413_b50","first-page":"1","article-title":"GS2P: a generative pre-trained learning to rank model with over-parameterization for web-scale search","author":"Li","year":"2024","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neucom.2024.128413_b51","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2024.128413_b52","series-title":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"635","article-title":"Ltrgcn: Large-scale graph convolutional networks-based learning to rank for web search","author":"Li","year":"2023"},{"year":"2018","series-title":"Bert: Pre-training of deep bidirectional transformers for language understanding","author":"Devlin","key":"10.1016\/j.neucom.2024.128413_b53"},{"key":"10.1016\/j.neucom.2024.128413_b54","doi-asserted-by":"crossref","unstructured":"Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 10012\u201310022.","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"10.1016\/j.neucom.2024.128413_b55","doi-asserted-by":"crossref","unstructured":"Y. Li, H. Xiong, L. Kong, Q. Wang, S. Wang, G. Chen, D. Yin, S2phere: Semi-supervised pre-training for web search over heterogeneous learning to rank data, in: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 4437\u20134448.","DOI":"10.1145\/3580305.3599935"},{"issue":"12","key":"10.1016\/j.neucom.2024.128413_b56","doi-asserted-by":"crossref","first-page":"24854","DOI":"10.1109\/TITS.2022.3198836","article-title":"3DCTN: 3D convolution-transformer network for point cloud classification","volume":"23","author":"Lu","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"year":"2021","series-title":"PU-transformer: Point cloud upsampling transformer","author":"Qiu","key":"10.1016\/j.neucom.2024.128413_b57"},{"issue":"4","key":"10.1016\/j.neucom.2024.128413_b58","doi-asserted-by":"crossref","first-page":"1327","DOI":"10.1007\/s10994-022-06148-1","article-title":"SDANet: spatial deep attention-based for point cloud classification and segmentation","volume":"111","author":"Gao","year":"2022","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neucom.2024.128413_b59","doi-asserted-by":"crossref","DOI":"10.1016\/j.cviu.2023.103690","article-title":"SCA-Net: Spatial and channel attention-based network for 3D point clouds","volume":"232","author":"Tang","year":"2023","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.neucom.2024.128413_b60","article-title":"PointGT: A method for point-cloud classification and segmentation based on local geometric transformation","author":"Zhang","year":"2024","journal-title":"IEEE Trans. Multimed."},{"issue":"5","key":"10.1016\/j.neucom.2024.128413_b61","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3326362","article-title":"Dynamic graph cnn for learning on point clouds","volume":"38","author":"Wang","year":"2019","journal-title":"ACM Trans. Graph."},{"issue":"6","key":"10.1016\/j.neucom.2024.128413_b62","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2980179.2980238","article-title":"A scalable active framework for region annotation in 3d shape collections","volume":"35","author":"Yi","year":"2016","journal-title":"ACM Trans. Graph."},{"year":"2018","series-title":"Point convolutional neural networks by extension operators","author":"Atzmon","key":"10.1016\/j.neucom.2024.128413_b63"},{"key":"10.1016\/j.neucom.2024.128413_b64","doi-asserted-by":"crossref","unstructured":"Y. Liu, B. Fan, G. Meng, J. Lu, S. Xiang, C. Pan, Densepoint: Learning densely contextual representation for efficient point cloud processing, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 5239\u20135248.","DOI":"10.1109\/ICCV.2019.00534"},{"key":"10.1016\/j.neucom.2024.128413_b65","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XXIII 16","first-page":"326","article-title":"A closer look at local aggregation operators in point cloud analysis","author":"Liu","year":"2020"},{"key":"10.1016\/j.neucom.2024.128413_b66","doi-asserted-by":"crossref","unstructured":"C. Wang, B. Samari, K. Siddiqi, Local spectral graph convolution for point set feature learning, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 52\u201366.","DOI":"10.1007\/978-3-030-01225-0_4"},{"key":"10.1016\/j.neucom.2024.128413_b67","first-page":"23192","article-title":"Pointnext: Revisiting pointnet++ with improved training and scaling strategies","volume":"35","author":"Qian","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2022","series-title":"Rethinking network design and local geometry in point cloud: A simple residual MLP framework","author":"Ma","key":"10.1016\/j.neucom.2024.128413_b68"},{"issue":"6","key":"10.1016\/j.neucom.2024.128413_b69","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1109\/JAS.2020.1003324","article-title":"CurveNet: Curvature-based multitask learning deep networks for 3D object recognition","volume":"8","author":"Muzahid","year":"2020","journal-title":"IEEE\/CAA J. Autom. Sin."},{"key":"10.1016\/j.neucom.2024.128413_b70","doi-asserted-by":"crossref","unstructured":"H. Ran, J. Liu, C. Wang, Surface representation for point clouds, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18942\u201318952.","DOI":"10.1109\/CVPR52688.2022.01837"},{"key":"10.1016\/j.neucom.2024.128413_b71","doi-asserted-by":"crossref","unstructured":"X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, J. Lu, Point-bert: Pre-training 3d point cloud transformers with masked point modeling, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 19313\u201319322.","DOI":"10.1109\/CVPR52688.2022.01871"},{"key":"10.1016\/j.neucom.2024.128413_b72","series-title":"European Conference on Computer Vision","first-page":"604","article-title":"Masked autoencoders for point cloud self-supervised learning","author":"Pang","year":"2022"},{"key":"10.1016\/j.neucom.2024.128413_b73","first-page":"27061","article-title":"Point-m2ae: multi-scale masked autoencoders for hierarchical point cloud pre-training","volume":"35","author":"Zhang","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2024.128413_b74","doi-asserted-by":"crossref","unstructured":"S. Qiu, S. Anwar, N. Barnes, Dense-resolution network for point cloud classification and segmentation, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 3813\u20133822.","DOI":"10.1109\/WACV48630.2021.00386"},{"key":"10.1016\/j.neucom.2024.128413_b75","doi-asserted-by":"crossref","first-page":"1943","DOI":"10.1109\/TMM.2021.3074240","article-title":"Geometric back-projection network for point cloud classification","volume":"24","author":"Qiu","year":"2021","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.neucom.2024.128413_b76","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"263","article-title":"Pranet: Parallel reverse attention network for polyp segmentation","author":"Fan","year":"2020"},{"key":"10.1016\/j.neucom.2024.128413_b77","doi-asserted-by":"crossref","unstructured":"R. Klokov, V. Lempitsky, Escape from cells: Deep kd-networks for the recognition of 3d point cloud models, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 863\u2013872.","DOI":"10.1109\/ICCV.2017.99"},{"key":"10.1016\/j.neucom.2024.128413_b78","doi-asserted-by":"crossref","unstructured":"L. Yi, H. Su, X. Guo, L.J. Guibas, Syncspeccnn: Synchronized spectral cnn for 3d shape segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2282\u20132290.","DOI":"10.1109\/CVPR.2017.697"},{"key":"10.1016\/j.neucom.2024.128413_b79","doi-asserted-by":"crossref","unstructured":"Y. Xu, T. Fan, M. Xu, L. Zeng, Y. Qiao, Spidercnn: Deep learning on point sets with parameterized convolutional filters, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 87\u2013102.","DOI":"10.1007\/978-3-030-01237-3_6"},{"key":"10.1016\/j.neucom.2024.128413_b80","doi-asserted-by":"crossref","unstructured":"Y. Liu, B. Fan, S. Xiang, C. Pan, Relation-shape convolutional neural network for point cloud analysis, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8895\u20138904.","DOI":"10.1109\/CVPR.2019.00910"},{"key":"10.1016\/j.neucom.2024.128413_b81","doi-asserted-by":"crossref","unstructured":"X. Yan, C. Zheng, Z. Li, S. Wang, S. Cui, Pointasnl: Robust point clouds processing using nonlocal neural networks with adaptive sampling, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5589\u20135598.","DOI":"10.1109\/CVPR42600.2020.00563"},{"year":"2021","series-title":"Dspoint: Dual-scale point cloud recognition with high-frequency fusion","author":"Zhang","key":"10.1016\/j.neucom.2024.128413_b82"},{"key":"10.1016\/j.neucom.2024.128413_b83","doi-asserted-by":"crossref","unstructured":"I. Armeni, O. Sener, A.R. Zamir, H. Jiang, I. Brilakis, M. Fischer, S. Savarese, 3d semantic parsing of large-scale indoor spaces, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1534\u20131543.","DOI":"10.1109\/CVPR.2016.170"},{"key":"10.1016\/j.neucom.2024.128413_b84","doi-asserted-by":"crossref","unstructured":"Z. Yang, L. Jiang, Y. Sun, B. Schiele, J. Jia, A unified query-based paradigm for point cloud understanding, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 8541\u20138551.","DOI":"10.1109\/CVPR52688.2022.00835"},{"key":"10.1016\/j.neucom.2024.128413_b85","doi-asserted-by":"crossref","unstructured":"H. Zhao, L. Jiang, C.-W. Fu, J. Jia, Pointweb: Enhancing local neighborhood features for point cloud processing, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 5565\u20135573.","DOI":"10.1109\/CVPR.2019.00571"},{"key":"10.1016\/j.neucom.2024.128413_b86","doi-asserted-by":"crossref","unstructured":"L. Xue, M. Gao, C. Xing, R. Mart\u00edn-Mart\u00edn, J. Wu, C. Xiong, R. Xu, J.C. Niebles, S. Savarese, Ulip: Learning a unified representation of language, images, and point clouds for 3d understanding, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 1179\u20131189.","DOI":"10.1109\/CVPR52729.2023.00120"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224011846?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224011846?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T16:22:03Z","timestamp":1725553323000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231224011846"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":86,"alternative-id":["S0925231224011846"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2024.128413","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"HQ-Net: A heatmap-based query backbone for point cloud understanding","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2024.128413","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"128413"}}