{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:04:27Z","timestamp":1740117867751,"version":"3.37.3"},"reference-count":83,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T00:00:00Z","timestamp":1717200000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100013431","name":"Jingdezhen Science and Technology Bureau","doi-asserted-by":"publisher","award":["2023GY001-01","20224GY008-03"],"id":[{"id":"10.13039\/501100013431","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013433","name":"Science and Technology Program of Jingdezhen City","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013433","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100009102","name":"Jiangxi Provincial Department of Education","doi-asserted-by":"publisher","award":["GJJ211348","GJJ2201032","GJJ2204703","GJJ2201049"],"id":[{"id":"10.13039\/501100009102","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010857","name":"Jiangxi Provincial Department of Science and Technology","doi-asserted-by":"publisher","award":["20232ABC03A29"],"id":[{"id":"10.13039\/501100010857","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1016\/j.neucom.2024.127642","type":"journal-article","created":{"date-parts":[[2024,4,4]],"date-time":"2024-04-04T15:44:12Z","timestamp":1712245452000},"page":"127642","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Modeling implicit variable and latent structure for aspect-based sentiment quadruple extraction"],"prefix":"10.1016","volume":"586","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-6549-4660","authenticated-orcid":false,"given":"Yu","family":"Nie","sequence":"first","affiliation":[]},{"given":"Jianming","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Yilai","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"doi-asserted-by":"crossref","unstructured":"L. Dong, F. Wei, C. Tan, D. Tang, M. Zhou, K. Xu, Adaptive Recursive Neural Network for Target-dependent Twitter Sentiment Classification, in: Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2014, pp. 49\u201354.","key":"10.1016\/j.neucom.2024.127642_b1","DOI":"10.3115\/v1\/P14-2009"},{"doi-asserted-by":"crossref","unstructured":"Y. Wang, M. Huang, X. Zhu, L. Zhao, Attention-based LSTM for Aspect-level Sentiment Classification, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016, pp. 606\u2013615.","key":"10.1016\/j.neucom.2024.127642_b2","DOI":"10.18653\/v1\/D16-1058"},{"unstructured":"H. Cao, J. Li, F. Su, F. Li, H. Fei, S. Wu, B. Li, L. Zhao, D. Ji, OneEE: A One-Stage Framework for Fast Overlapping and Nested Event Extraction, in: Proceedings of the 29th International Conference on Computational Linguistics, 2022, pp. 1953\u20131964.","key":"10.1016\/j.neucom.2024.127642_b3"},{"doi-asserted-by":"crossref","unstructured":"K. Sun, R. Zhang, S. Mensah, Y. Mao, X. Liu, Aspect-Level Sentiment Analysis Via Convolution over Dependency Tree, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019, pp. 5679\u20135688.","key":"10.1016\/j.neucom.2024.127642_b4","DOI":"10.18653\/v1\/D19-1569"},{"doi-asserted-by":"crossref","unstructured":"H. Tang, D. Ji, C. Li, Q. Zhou, Dependency Graph Enhanced Dual-transformer Structure for Aspect-based Sentiment Classification, in: Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2020, pp. 6578\u20136588.","key":"10.1016\/j.neucom.2024.127642_b5","DOI":"10.18653\/v1\/2020.acl-main.588"},{"issue":"6","key":"10.1016\/j.neucom.2024.127642_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2020.102311","article-title":"Boundaries and edges rethinking: An end-to-end neural model for overlapping entity relation extraction","volume":"57","author":"Fei","year":"2020","journal-title":"Inf. Process. Manage."},{"doi-asserted-by":"crossref","unstructured":"B. Li, H. Fei, F. Li, Y. Wu, J. Zhang, S. Wu, J. Li, Y. Liu, L. Liao, T.S. Chua, D. Ji, DiaASQ: A Benchmark of Conversational Aspect-based Sentiment Quadruple Analysis, in: Findings of the Association for Computational Linguistics, ACL 2023, 2023, pp. 13449\u201313467.","key":"10.1016\/j.neucom.2024.127642_b7","DOI":"10.18653\/v1\/2023.findings-acl.849"},{"issue":"1\u20132","key":"10.1016\/j.neucom.2024.127642_b8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/1500000011","article-title":"Opinion mining and sentiment analysis","volume":"2","author":"Pang","year":"2007","journal-title":"Found. Trends Inf. Retr."},{"doi-asserted-by":"crossref","unstructured":"Z. Wang, Y. Zhang, Opinion recommendation using a neural model, in: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017, pp. 1626\u20131637.","key":"10.1016\/j.neucom.2024.127642_b9","DOI":"10.18653\/v1\/D17-1170"},{"doi-asserted-by":"crossref","unstructured":"H. Fei, Y. Ren, D. Ji, Retrofitting Structure-aware Transformer Language Model for End Tasks, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020, pp. 2151\u20132161.","key":"10.1016\/j.neucom.2024.127642_b10","DOI":"10.18653\/v1\/2020.emnlp-main.168"},{"doi-asserted-by":"crossref","unstructured":"H. Fei, S. Wu, Y. Ren, F. Li, D. Ji, Better Combine Them Together! Integrating Syntactic Constituency and Dependency Representations for Semantic Role Labeling, in: Findings of the Association for Computational Linguistics, ACL\/IJCNLP 2021, 2021, pp. 549\u2013559.","key":"10.1016\/j.neucom.2024.127642_b11","DOI":"10.18653\/v1\/2021.findings-acl.49"},{"doi-asserted-by":"crossref","unstructured":"H. Peng, L. Xu, L. Bing, F. Huang, W. Lu, L. Si, Knowing What, How and Why: A Near Complete Solution for Aspect-Based Sentiment Analysis, in: Proceedings of the Association for the Advancement of Artificial Intelligence, 2020, pp. 8600\u20138607.","key":"10.1016\/j.neucom.2024.127642_b12","DOI":"10.1609\/aaai.v34i05.6383"},{"doi-asserted-by":"crossref","unstructured":"W. Zhang, Y. Deng, X. Li, Y. Yuan, L. Bing, W. Lam, Aspect Sentiment Quad Prediction as Paraphrase Generation, in: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021, pp. 9209\u20139219.","key":"10.1016\/j.neucom.2024.127642_b13","DOI":"10.18653\/v1\/2021.emnlp-main.726"},{"doi-asserted-by":"crossref","unstructured":"H. Cai, R. Xia, J. Yu, Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021, pp. 340\u2013350.","key":"10.1016\/j.neucom.2024.127642_b14","DOI":"10.18653\/v1\/2021.acl-long.29"},{"doi-asserted-by":"crossref","unstructured":"H. Fei, F. Li, B. Li, D. Ji, Encoder-Decoder Based Unified Semantic Role Labeling with Label-Aware Syntax, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2021, pp. 12794\u201312802.","key":"10.1016\/j.neucom.2024.127642_b15","DOI":"10.1609\/aaai.v35i14.17514"},{"doi-asserted-by":"crossref","unstructured":"H. Fei, Y. Zhang, Y. Ren, D. Ji, Latent Emotion Memory for Multi-Label Emotion Classification, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 7692\u20137699.","key":"10.1016\/j.neucom.2024.127642_b16","DOI":"10.1609\/aaai.v34i05.6271"},{"doi-asserted-by":"crossref","unstructured":"J. Li, H. Fei, J. Liu, S. Wu, M. Zhang, C. Teng, D. Ji, F. Li, Unified Named Entity Recognition as Word-Word Relation Classification, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 10965\u201310973.","key":"10.1016\/j.neucom.2024.127642_b17","DOI":"10.1609\/aaai.v36i10.21344"},{"doi-asserted-by":"crossref","unstructured":"J. Li, K. Xu, F. Li, H. Fei, Y. Ren, D. Ji, MRN: A Locally and Globally Mention-Based Reasoning Network for Document-Level Relation Extraction, in: Findings of the Association for Computational Linguistics, ACL-IJCNLP 2021, 2021, pp. 1359\u20131370.","key":"10.1016\/j.neucom.2024.127642_b18","DOI":"10.18653\/v1\/2021.findings-acl.117"},{"doi-asserted-by":"crossref","unstructured":"F. Wang, F. Li, H. Fei, J. Li, S. Wu, F. Su, W. Shi, D. Ji, B. Cai, Entity-centered Cross-document Relation Extraction, in: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, 2022, pp. 9871\u20139881.","key":"10.1016\/j.neucom.2024.127642_b19","DOI":"10.18653\/v1\/2022.emnlp-main.671"},{"doi-asserted-by":"crossref","unstructured":"S. Wu, H. Fei, F. Li, M. Zhang, Y. Liu, C. Teng, D. Ji, Mastering the Explicit Opinion-Role Interaction: Syntax-Aided Neural Transition System for Unified Opinion Role Labeling, in: Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, 2022, pp. 11513\u201311521.","key":"10.1016\/j.neucom.2024.127642_b20","DOI":"10.1609\/aaai.v36i10.21404"},{"key":"10.1016\/j.neucom.2024.127642_b21","article-title":"Sequence to sequence learning with neural networks","volume":"27","author":"Sutskever","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"doi-asserted-by":"crossref","unstructured":"X. Zhang, Y. Yang, S. Yuan, D. Shen, L. Carin, Syntax-Infused Variational Autoencoder for Text Generation, in: Proceedings of the ACL, 2019, pp. 2069\u20132078.","key":"10.1016\/j.neucom.2024.127642_b22","DOI":"10.18653\/v1\/P19-1199"},{"unstructured":"O. Vinyals, M. Fortunato, N. Jaitly, Pointer Networks, in: Proceedings of the International Conference on Neural Information Processing, 2015, pp. 2692\u20132700.","key":"10.1016\/j.neucom.2024.127642_b23"},{"doi-asserted-by":"crossref","unstructured":"J. Libovick\u00fd, J. Helcl, End-to-End Non-Autoregressive Neural Machine Translation with Connectionist Temporal Classification, in: Proceedings of the EMNLP, 2018, pp. 3016\u20133021.","key":"10.1016\/j.neucom.2024.127642_b24","DOI":"10.18653\/v1\/D18-1336"},{"doi-asserted-by":"crossref","unstructured":"X. Ma, C. Zhou, X. Li, G. Neubig, E. Hovy, FlowSeq: Non-Autoregressive Conditional Sequence Generation with Generative Flow, in: Proceedings of the EMNLP, 2019, pp. 4282\u20134292.","key":"10.1016\/j.neucom.2024.127642_b25","DOI":"10.18653\/v1\/D19-1437"},{"doi-asserted-by":"crossref","unstructured":"H. Fei, J. Li, Y. Ren, M. Zhang, D. Ji, Making Decision like Human: Joint Aspect Category Sentiment Analysis and Rating Prediction with Fine-to-Coarse Reasoning, in: Proceedings of the WWW: The Web Conference, 2021, 2022, pp. 3042\u20133051.","key":"10.1016\/j.neucom.2024.127642_b26","DOI":"10.1145\/3485447.3512024"},{"doi-asserted-by":"crossref","unstructured":"W. Wang, S.J. Pan, D. Dahlmeier, X. Xiao, Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016, pp. 616\u2013626.","key":"10.1016\/j.neucom.2024.127642_b27","DOI":"10.18653\/v1\/D16-1059"},{"doi-asserted-by":"crossref","unstructured":"T. Wilson, J. Wiebe, P. Hoffmann, Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2005, pp. 347\u2013354.","key":"10.1016\/j.neucom.2024.127642_b28","DOI":"10.3115\/1220575.1220619"},{"issue":"1","key":"10.1016\/j.neucom.2024.127642_b29","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.ipm.2015.04.003","article-title":"Polarity shift detection, elimination and ensemble: A three-stage model for document-level sentiment analysis","volume":"52","author":"Xia","year":"2016","journal-title":"Inf. Process. Manage."},{"doi-asserted-by":"crossref","unstructured":"H. Fei, F. Li, C. Li, S. Wu, J. Li, D. Ji, Inheriting the Wisdom of Predecessors: A Multiplex Cascade Framework for Unified Aspect-based Sentiment Analysis, in: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, 2022, pp. 4096\u20134103.","key":"10.1016\/j.neucom.2024.127642_b30","DOI":"10.24963\/ijcai.2022\/572"},{"key":"10.1016\/j.neucom.2024.127642_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107643","article-title":"Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks","volume":"235","author":"Liang","year":"2022","journal-title":"Knowl.-Based Syst."},{"doi-asserted-by":"crossref","unstructured":"C. Chen, Z. Teng, Z. Wang, Y. Zhang, Discrete Opinion Tree Induction for Aspect-based Sentiment Analysis, in: Proceedings of the ACL, 2022, pp. 2051\u20132064.","key":"10.1016\/j.neucom.2024.127642_b32","DOI":"10.18653\/v1\/2022.acl-long.145"},{"issue":"3","key":"10.1016\/j.neucom.2024.127642_b33","doi-asserted-by":"crossref","first-page":"761","DOI":"10.1109\/TAFFC.2019.2897093","article-title":"Neural attentive network for cross-domain aspect-level sentiment classification","volume":"12","author":"Yang","year":"2019","journal-title":"IEEE Trans. Affect. Comput."},{"doi-asserted-by":"crossref","unstructured":"W. Shi, F. Li, J. Li, H. Fei, D. Ji, Effective Token Graph Modeling using a Novel Labeling Strategy for Structured Sentiment Analysis, in: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 4232\u20134241.","key":"10.1016\/j.neucom.2024.127642_b34","DOI":"10.18653\/v1\/2022.acl-long.291"},{"issue":"5","key":"10.1016\/j.neucom.2024.127642_b35","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2023.103469","article-title":"Syntax-based dynamic latent graph for event relation extraction","volume":"60","author":"Zhuang","year":"2023","journal-title":"Inf. Process. Manage."},{"doi-asserted-by":"crossref","unstructured":"S. Wu, H. Fei, Y. Ren, D. Ji, J. Li, Learn from Syntax: Improving Pair-wise Aspect and Opinion Terms Extraction with Rich Syntactic Knowledge, in: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021, pp. 3957\u20133963.","key":"10.1016\/j.neucom.2024.127642_b36","DOI":"10.24963\/ijcai.2021\/545"},{"unstructured":"I. Sutskever, O. Vinyals, Q.V. Le, Sequence to Sequence Learning with Neural Networks, in: Proceedings of the NeurIPS, 2014, pp. 3104\u20133112.","key":"10.1016\/j.neucom.2024.127642_b37"},{"unstructured":"D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, in: Proceedings of the ICLR, 2015.","key":"10.1016\/j.neucom.2024.127642_b38"},{"doi-asserted-by":"crossref","unstructured":"Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D.F. Wong, L.S. Chao, Learning Deep Transformer Models for Machine Translation, in: Proceedings of the ACL, 2019, pp. 1810\u20131822.","key":"10.1016\/j.neucom.2024.127642_b39","DOI":"10.18653\/v1\/P19-1176"},{"doi-asserted-by":"crossref","unstructured":"S. Chopra, M. Auli, A.M. Rush, Abstractive Sentence Summarization with Attentive Recurrent Neural Networks, in: Proceedings of the NAACL, 2016, pp. 93\u201398.","key":"10.1016\/j.neucom.2024.127642_b40","DOI":"10.18653\/v1\/N16-1012"},{"doi-asserted-by":"crossref","unstructured":"X. Zhang, F. Wei, M. Zhou, HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization, in: Proceedings of the ACL, 2019, pp. 5059\u20135069.","key":"10.1016\/j.neucom.2024.127642_b41","DOI":"10.18653\/v1\/P19-1499"},{"doi-asserted-by":"crossref","unstructured":"I.V. Serban, A. Sordoni, Y. Bengio, A.C. Courville, J. Pineau, Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models, in: Proceedings of the AAAI, 2016, pp. 3776\u20133784.","key":"10.1016\/j.neucom.2024.127642_b42","DOI":"10.1609\/aaai.v30i1.9883"},{"doi-asserted-by":"crossref","unstructured":"E. Ekstedt, G. Skantze, TurnGPT: a Transformer-based Language Model for Predicting Turn-taking in Spoken Dialog, in: Findings of the Association for Computational Linguistics, EMNLP 2020, 2020, pp. 2981\u20132990.","key":"10.1016\/j.neucom.2024.127642_b43","DOI":"10.18653\/v1\/2020.findings-emnlp.268"},{"doi-asserted-by":"crossref","unstructured":"X. Ma, Z. Hu, J. Liu, N. Peng, G. Neubig, E. Hovy, Stack-Pointer Networks for Dependency Parsing, in: Proceedings of the ACL, 2018, pp. 1403\u20131414.","key":"10.1016\/j.neucom.2024.127642_b44","DOI":"10.18653\/v1\/P18-1130"},{"year":"2023","author":"Wu","series-title":"NExT-GPT: Any-to-any multimodal LLM","key":"10.1016\/j.neucom.2024.127642_b45"},{"issue":"3","key":"10.1016\/j.neucom.2024.127642_b46","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbaa110","article-title":"Enriching contextualized language model from knowledge graph for biomedical information extraction","volume":"22","author":"Fei","year":"2021","journal-title":"Brief. Bioinform."},{"doi-asserted-by":"crossref","unstructured":"H. Fei, Y. Ren, S. Wu, B. Li, D. Ji, Latent Target-Opinion as Prior for Document-Level Sentiment Classification: A Variational Approach from Fine-Grained Perspective, in: Proceedings of the WWW: The Web Conference, 2021, 2021, pp. 553\u2013564.","key":"10.1016\/j.neucom.2024.127642_b47","DOI":"10.1145\/3442381.3449789"},{"key":"10.1016\/j.neucom.2024.127642_b48","first-page":"1","article-title":"Nonautoregressive encoder-decoder neural framework for end-to-end aspect-based sentiment triplet extraction","author":"Fei","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"doi-asserted-by":"crossref","unstructured":"J. Guo, L. Xu, E. Chen, Jointly Masked Sequence-to-Sequence Model for Non-Autoregressive Neural Machine Translation, in: Proceedings of the ACL, 2020, pp. 376\u2013385.","key":"10.1016\/j.neucom.2024.127642_b49","DOI":"10.18653\/v1\/2020.acl-main.36"},{"doi-asserted-by":"crossref","unstructured":"S.R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, S. Bengio, Generating Sentences from a Continuous Space, in: Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, 2016, pp. 10\u201321.","key":"10.1016\/j.neucom.2024.127642_b50","DOI":"10.18653\/v1\/K16-1002"},{"unstructured":"Y. Miao, L. Yu, P. Blunsom, Neural variational inference for text processing, in: Proceedings of the International Conference on Machine Learning, 2016, pp. 1727\u20131736.","key":"10.1016\/j.neucom.2024.127642_b51"},{"unstructured":"H. Bahuleyan, L. Mou, O. Vechtomova, P. Poupart, Variational Attention for Sequence-to-Sequence Models, in: Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp. 1672\u20131682.","key":"10.1016\/j.neucom.2024.127642_b52"},{"doi-asserted-by":"crossref","unstructured":"W. Aziz, P. Schulz, Variational Inference and Deep Generative Models, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts, 2018, pp. 8\u20139.","key":"10.1016\/j.neucom.2024.127642_b53","DOI":"10.18653\/v1\/P18-5003"},{"unstructured":"H. Fei, S. Wu, J. Li, B. Li, F. Li, L. Qin, M. Zhang, M. Zhang, T.-S. Chua, LasUIE: Unifying Information Extraction with Latent Adaptive Structure-aware Generative Language Model, in: Proceedings of the Advances in Neural Information Processing Systems, NeurIPS 2022, 2022, pp. 15460\u201315475.","key":"10.1016\/j.neucom.2024.127642_b54"},{"doi-asserted-by":"crossref","unstructured":"H. Fei, B. Li, Q. Liu, L. Bing, F. Li, T.S. Chua, Reasoning Implicit Sentiment with Chain-of-Thought Prompting, in: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 2023, pp. 1171\u20131182.","key":"10.1016\/j.neucom.2024.127642_b55","DOI":"10.18653\/v1\/2023.acl-short.101"},{"doi-asserted-by":"crossref","unstructured":"H. Fei, Q. Liu, M. Zhang, M. Zhang, T.-S. Chua, Scene Graph as Pivoting: Inference-time Image-free Unsupervised Multimodal Machine Translation with Visual Scene Hallucination, in: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023, pp. 5980\u20135994.","key":"10.1016\/j.neucom.2024.127642_b56","DOI":"10.18653\/v1\/2023.acl-long.329"},{"issue":"2","key":"10.1016\/j.neucom.2024.127642_b57","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3564281","article-title":"On the robustness of aspect-based sentiment analysis: Rethinking model, data, and training","volume":"41","author":"Fei","year":"2022","journal-title":"ACM Trans. Inf. Syst."},{"doi-asserted-by":"crossref","unstructured":"S. Wu, H. Fei, Y. Cao, L. Bing, T.-S. Chua, Information Screening whilst Exploiting! Multimodal Relation Extraction with Feature Denoising and Multimodal Topic Modeling, in: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023, pp. 14734\u201314751.","key":"10.1016\/j.neucom.2024.127642_b58","DOI":"10.18653\/v1\/2023.acl-long.823"},{"key":"10.1016\/j.neucom.2024.127642_b59","article-title":"Imagine that! abstract-to-intricate text-to-image synthesis with scene graph hallucination diffusion","volume":"36","author":"Wu","year":"2024","journal-title":"Adv. Neural Inf. Process. Syst."},{"doi-asserted-by":"crossref","unstructured":"S. Wu, H. Fei, W. Ji, T.-S. Chua, Cross2StrA: Unpaired Cross-lingual Image Captioning with Cross-lingual Cross-modal Structure-pivoted Alignment, in: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2023, pp. 2593\u20132608.","key":"10.1016\/j.neucom.2024.127642_b60","DOI":"10.18653\/v1\/2023.acl-long.146"},{"doi-asserted-by":"crossref","unstructured":"B. Li, H. Fei, L. Liao, Y. Zhao, C. Teng, T.-S. Chua, D. Ji, F. Li, Revisiting disentanglement and fusion on modality and context in conversational multimodal emotion recognition, in: Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 5923\u20135934.","key":"10.1016\/j.neucom.2024.127642_b61","DOI":"10.1145\/3581783.3612053"},{"unstructured":"A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is All you Need, in: Proceedings of the Annual Conference on Neural Information Processing Systems, 2017, pp. 5998\u20136008.","key":"10.1016\/j.neucom.2024.127642_b62"},{"unstructured":"J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the North American Chapter of the Association for Computational Linguistics, 2019, pp. 4171\u20134186.","key":"10.1016\/j.neucom.2024.127642_b63"},{"doi-asserted-by":"crossref","unstructured":"Y. Zhang, V. Zhong, D. Chen, G. Angeli, C.D. Manning, Position-aware attention and supervised data improve slot filling, in: Proceedings of the EMNLP, 2017, pp. 35\u201345.","key":"10.1016\/j.neucom.2024.127642_b64","DOI":"10.18653\/v1\/D17-1004"},{"unstructured":"S. Baccianella, A. Esuli, F. Sebastiani, Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining, in: Proceedings of the International Conference on Language Resources and Evaluation, LREC, 2010, pp. 2200\u20132204.","key":"10.1016\/j.neucom.2024.127642_b65"},{"issue":"4","key":"10.1016\/j.neucom.2024.127642_b66","first-page":"375","article-title":"The general inquirer: A computer approach to content analysis","volume":"4","author":"Stone","year":"1966","journal-title":"Inf. Storage Retr."},{"issue":"2001","key":"10.1016\/j.neucom.2024.127642_b67","first-page":"2001","article-title":"Linguistic inquiry and word count: LIWC 2001","volume":"71","author":"Pennebaker","year":"2001","journal-title":"Mahway: Lawrence Erlbaum Assoc."},{"doi-asserted-by":"crossref","unstructured":"T. Wilson, J. Wiebe, P. Hoffmann, Recognizing contextual polarity in phrase-level sentiment analysis, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2005, pp. 347\u2013354.","key":"10.1016\/j.neucom.2024.127642_b68","DOI":"10.3115\/1220575.1220619"},{"doi-asserted-by":"crossref","unstructured":"M. Hu, B. Liu, Mining and summarizing customer reviews, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2004, pp. 168\u2013177.","key":"10.1016\/j.neucom.2024.127642_b69","DOI":"10.1145\/1014052.1014073"},{"unstructured":"C. Louizos, M. Welling, D.P. Kingma, Learning Sparse Neural Networks through L_0 Regularization, in: Proceedings of 6th International Conference on Learning Representations, ICLR, 2018.","key":"10.1016\/j.neucom.2024.127642_b70"},{"unstructured":"C.J. Maddison, A. Mnih, Y.W. Teh, The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables, in: Proceedings of 5th International Conference on Learning Representations, ICLR, 2017.","key":"10.1016\/j.neucom.2024.127642_b71"},{"unstructured":"P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Li\u00f2, Y. Bengio, Graph Attention Networks, in: Proceedings of the 6th International Conference on Learning Representations, ICLR, 2018, pp. 35\u201345.","key":"10.1016\/j.neucom.2024.127642_b72"},{"doi-asserted-by":"crossref","unstructured":"M. Pontiki, D. Galanis, H. Papageorgiou, S. Manandhar, I. Androutsopoulos, Semeval-2015 task 12: Aspect based sentiment analysis, in: Proceedings of the 9th International Workshop on Semantic Evaluation, SemEval-2015, 2015, pp. 486\u2013495.","key":"10.1016\/j.neucom.2024.127642_b73","DOI":"10.18653\/v1\/S15-2082"},{"doi-asserted-by":"crossref","unstructured":"M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos, S. Manandhar, M. AL-Smadi, M. Al-Ayyoub, Y. Zhao, B. Qin, O. De Clercq, V. Hoste, M. Apidianaki, X. Tannier, N. Loukachevitch, E. Kotelnikov, N. Bel, S.M. Jim\u00e9nez-Zafra, G. Eryi\u011fit, SemEval-2016 Task 5: Aspect Based Sentiment Analysis, in: Proceedings of the 10th International Workshop on Semantic Evaluation, SemEVal-2016, 2016, pp. 19\u201330.","key":"10.1016\/j.neucom.2024.127642_b74","DOI":"10.18653\/v1\/S16-1002"},{"unstructured":"J. Devlin, M.W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the North American Chapter of the Association for Computational Linguistics, 2019, pp. 4171\u20134186.","key":"10.1016\/j.neucom.2024.127642_b75"},{"issue":"1","key":"10.1016\/j.neucom.2024.127642_b76","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1162\/coli_a_00034","article-title":"Opinion word expansion and target extraction through double propagation","volume":"37","author":"Qiu","year":"2011","journal-title":"Comput. Linguist."},{"doi-asserted-by":"crossref","unstructured":"L. Xu, H. Li, W. Lu, L. Bing, Position-Aware Tagging for Aspect Sentiment Triplet Extraction, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2020, pp. 2339\u20132349.","key":"10.1016\/j.neucom.2024.127642_b77","DOI":"10.18653\/v1\/2020.emnlp-main.183"},{"doi-asserted-by":"crossref","unstructured":"H. Wan, Y. Yang, J. Du, Y. Liu, K. Qi, J.Z. Pan, Target-Aspect-Sentiment Joint Detection for Aspect-Based Sentiment Analysis, in: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, 2020, pp. 9122\u20139129.","key":"10.1016\/j.neucom.2024.127642_b78","DOI":"10.1609\/aaai.v34i05.6447"},{"doi-asserted-by":"crossref","unstructured":"W. Wang, S.J. Pan, D. Dahlmeier, X. Xiao, Coupled Multi-Layer Attentions for Co-Extraction of Aspect and Opinion Terms, in: Proceedings of the Association for the Advancement of Artificial Intelligence, 2017, pp. 3316\u20133322.","key":"10.1016\/j.neucom.2024.127642_b79","DOI":"10.1609\/aaai.v31i1.10974"},{"doi-asserted-by":"crossref","unstructured":"X. Li, L. Bing, P. Li, W. Lam, A Unified Model for Opinion Target Extraction and Target Sentiment Prediction, in: Proceedings of the Association for the Advancement of Artificial Intelligence, 2019, pp. 6714\u20136721.","key":"10.1016\/j.neucom.2024.127642_b80","DOI":"10.1609\/aaai.v33i01.33016714"},{"key":"10.1016\/j.neucom.2024.127642_b81","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107073","article-title":"Multiple-element joint detection for aspect-based sentiment analysis","volume":"223","author":"Wu","year":"2021","journal-title":"Knowl.-Based Syst."},{"doi-asserted-by":"crossref","unstructured":"W. Zhang, X. Li, Y. Deng, L. Bing, W. Lam, Towards Generative Aspect-Based Sentiment Analysis, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, 2021, pp. 504\u2013510.","key":"10.1016\/j.neucom.2024.127642_b82","DOI":"10.18653\/v1\/2021.acl-short.64"},{"doi-asserted-by":"crossref","unstructured":"C. Zhang, Q. Li, D. Song, Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, 2019, pp. 4568\u20134578.","key":"10.1016\/j.neucom.2024.127642_b83","DOI":"10.18653\/v1\/D19-1464"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224004132?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224004132?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T08:04:24Z","timestamp":1714205064000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231224004132"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6]]},"references-count":83,"alternative-id":["S0925231224004132"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127642","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2024,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Modeling implicit variable and latent structure for aspect-based sentiment quadruple extraction","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127642","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"127642"}}