{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T19:12:16Z","timestamp":1724958736476},"reference-count":19,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.neucom.2024.127556","type":"journal-article","created":{"date-parts":[[2024,3,18]],"date-time":"2024-03-18T07:17:56Z","timestamp":1710746276000},"page":"127556","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["mlscorecheck: Testing the consistency of reported performance scores and experiments in machine learning"],"prefix":"10.1016","volume":"583","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1736-0988","authenticated-orcid":false,"given":"Gy\u00f6rgy","family":"Kov\u00e1cs","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6893-3067","authenticated-orcid":false,"given":"Attila","family":"Fazekas","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.neucom.2024.127556_b1","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.aci.2018.08.003","article-title":"Classification assessment methods","volume":"17","author":"Tharwat","year":"2020","journal-title":"Appl. Comput. Inform."},{"key":"10.1016\/j.neucom.2024.127556_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.101987","article-title":"Overly optimistic prediction results on imbalanced data: a case study of flaws and benefits when applying over-sampling","volume":"111","author":"Vandewiele","year":"2021","journal-title":"Artif. Intell. Med."},{"issue":"04","key":"10.1016\/j.neucom.2024.127556_b3","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1055\/s-0033-1359421","article-title":"Statistical errors in clinical studies","volume":"02","author":"Slutsky","year":"2013","journal-title":"J. Wrist Surg."},{"key":"10.1016\/j.neucom.2024.127556_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.patter.2023.100804","article-title":"Leakage and the reproducibility crisis in machine-learning-based science","author":"Kapoor","year":"2023","journal-title":"Patterns"},{"issue":"6377","key":"10.1016\/j.neucom.2024.127556_b5","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1126\/science.359.6377.725","article-title":"Artificial intelligence faces reproducibility crisis","volume":"359","author":"Hutson","year":"2018","journal-title":"Science"},{"key":"10.1016\/j.neucom.2024.127556_b6","doi-asserted-by":"crossref","DOI":"10.7554\/eLife.21451","article-title":"Publication bias and the canonization of false facts","volume":"5","author":"Nissen","year":"2016","journal-title":"eLife"},{"issue":"2","key":"10.1016\/j.neucom.2024.127556_b7","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1007\/s10515-013-0129-8","article-title":"DConfusion: a technique to allow cross study performance evaluation of fault prediction studies","volume":"21","author":"Bowes","year":"2013","journal-title":"Autom. Softw. Eng."},{"key":"10.1016\/j.neucom.2024.127556_b8","series-title":"Intelligent Data Engineering and Automated Learning \u2013 IDEAL 2019","first-page":"102","article-title":"The prevalence of errors in machine learning experiments","author":"Shepperd","year":"2019"},{"issue":"4","key":"10.1016\/j.neucom.2024.127556_b9","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.media.2015.12.003","article-title":"A self-calibrating approach for the segmentation of retinal vessels by template matching and contour reconstruction","volume":"29","author":"Kov\u00e1cs","year":"2016","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2024.127556_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102300","article-title":"A new baseline for retinal vessel segmentation: Numerical identification and correction of methodological inconsistencies affecting 100+ papers","volume":"75","author":"Kov\u00e1cs","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.neucom.2024.127556_b11","doi-asserted-by":"crossref","DOI":"10.1109\/ACCESS.2022.3186444","article-title":"Multi-class classification performance curve","volume":"10","author":"Aguilar-Ruiz","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2024.127556_b12","series-title":"Testing the consistency of performance scores reported for binary classification problems","author":"Fazekas","year":"2023"},{"issue":"8","key":"10.1016\/j.neucom.2024.127556_b13","doi-asserted-by":"crossref","first-page":"1390","DOI":"10.3390\/diagnostics11081390","article-title":"Machine learning and deep learning methods for skin lesion classification and diagnosis: A systematic review","volume":"11","author":"Kassem","year":"2021","journal-title":"Diagnostics"},{"issue":"9","key":"10.1016\/j.neucom.2024.127556_b14","doi-asserted-by":"crossref","first-page":"911","DOI":"10.1007\/s11517-008-0350-y","article-title":"A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups","volume":"46","author":"Fele-\u017dor\u017e","year":"2008","journal-title":"Med. Biol. Eng. Comput."},{"key":"10.1016\/j.neucom.2024.127556_b15","series-title":"Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC)","author":"Gutman","year":"2016"},{"key":"10.1016\/j.neucom.2024.127556_b16","doi-asserted-by":"crossref","first-page":"1454","DOI":"10.1016\/j.biopha.2017.11.009","article-title":"A review on exudates detection methods for diabetic retinopathy","volume":"97","author":"Joshi","year":"2018","journal-title":"Biomed. Pharmacother."},{"key":"10.1016\/j.neucom.2024.127556_b17","doi-asserted-by":"crossref","first-page":"747","DOI":"10.2147\/OPTH.S348479","article-title":"Machine learning and deep learning techniques for optic disc and cup segmentation \u2013 a review","volume":"16","author":"Alawad","year":"2022","journal-title":"Clin. Ophthalmol."},{"key":"10.1016\/j.neucom.2024.127556_b18","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1613\/jair.1.11192","article-title":"SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary","volume":"61","author":"Fern\u00e1ndez","year":"2018","journal-title":"J. Artificial Intelligence Res."},{"key":"10.1016\/j.neucom.2024.127556_b19","series-title":"Imbalanced learning: Foundations, algorithms, and applications","author":"He","year":"2013"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224003278?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224003278?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,7]],"date-time":"2024-04-07T04:59:48Z","timestamp":1712465988000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231224003278"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":19,"alternative-id":["S0925231224003278"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127556","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"mlscorecheck: Testing the consistency of reported performance scores and experiments in machine learning","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127556","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"simple-article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"127556"}}