{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T05:20:22Z","timestamp":1731648022812,"version":"3.28.0"},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.neucom.2024.127551","type":"journal-article","created":{"date-parts":[[2024,3,14]],"date-time":"2024-03-14T03:04:25Z","timestamp":1710385465000},"page":"127551","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Brain magnetic resonance images segmentation via improved mixtures of factor analyzers based on dynamic co-clustering"],"prefix":"10.1016","volume":"583","author":[{"given":"Rahman","family":"Farnoosh","sequence":"first","affiliation":[]},{"given":"Fatemeh","family":"Aghagoli","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.neucom.2024.127551_bib1","doi-asserted-by":"crossref","first-page":"1048","DOI":"10.3390\/pharmaceutics14051048","article-title":"Efficacy of polymer-based nanomedicine for the treatment of brain cancer","volume":"14","author":"Naki","year":"2022","journal-title":"Pharmaceutics"},{"key":"10.1016\/j.neucom.2024.127551_bib2","doi-asserted-by":"crossref","DOI":"10.1016\/j.destud.2021.101078","article-title":"Functional magnetic resonance imaging (fMRI) in design studies: methodological considerations, challenges, and recommendations","volume":"78","author":"Hay","year":"2022","journal-title":"Des. Stud."},{"issue":"29","key":"10.1016\/j.neucom.2024.127551_bib3","doi-asserted-by":"crossref","first-page":"21771","DOI":"10.1007\/s11042-020-08898-3","article-title":"A survey on brain tumor detection techniques for MR images","volume":"79","author":"Chahal","year":"2020","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.neucom.2024.127551_bib4","article-title":"Brain tumor detection and screening using artificial intelligence techniques: current trends and future perspectives","volume":"107063","author":"Raghavendra","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.neucom.2024.127551_bib5","first-page":"1","article-title":"Parallel one-class extreme learning machine for imbalance learning based on Bayesian approach","author":"Li","year":"2018","journal-title":"J. Ambient Intell. Humaniz. Comput."},{"key":"10.1016\/j.neucom.2024.127551_bib6","doi-asserted-by":"crossref","first-page":"484","DOI":"10.1109\/TNSRE.2022.3226860","article-title":"Physics-informed deep learning for musculoskeletal modeling: predicting muscle forces and joint kinematics from surface EMG","volume":"31","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"4","key":"10.1016\/j.neucom.2024.127551_bib7","doi-asserted-by":"crossref","first-page":"2923","DOI":"10.1007\/s10462-022-10245-x","article-title":"Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review","volume":"56","author":"Jyothi","year":"2023","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.neucom.2024.127551_bib8","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104398","article-title":"A review on recent developments in cancer detection using machine learning and deep learning models","volume":"80","author":"Maurya","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"issue":"13","key":"10.1016\/j.neucom.2024.127551_bib9","doi-asserted-by":"crossref","first-page":"18595","DOI":"10.1007\/s11042-022-12271-x","article-title":"New techniques for efficiently k-NN algorithm for brain tumor detection","volume":"81","author":"Saeed","year":"2022","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.neucom.2024.127551_bib10","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105797","article-title":"A novel extended Kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors","volume":"200","author":"Chen","year":"2021","journal-title":"Comput. Methods Prog. Biomed."},{"key":"10.1016\/j.neucom.2024.127551_bib11","doi-asserted-by":"crossref","first-page":"7799812","DOI":"10.1155\/2022\/7799812","article-title":"Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis","volume":"2022","author":"Indira","year":"2022","journal-title":"BioMed. Res. Int."},{"issue":"2","key":"10.1016\/j.neucom.2024.127551_bib12","doi-asserted-by":"crossref","first-page":"27","DOI":"10.3390\/bdcc3020027","article-title":"Automatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm","volume":"3","author":"Alam","year":"2019","journal-title":"Big Data Cogn. Comput."},{"key":"10.1016\/j.neucom.2024.127551_bib13","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.neucom.2018.02.055","article-title":"Model-based co-clustering for functional data","volume":"291","author":"Slimen","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127551_bib14","first-page":"1","article-title":"Application of a modified combinational approach to brain tumor detection in MR images","author":"Farnoosh","year":"2022","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.neucom.2024.127551_bib15","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2022.07.070","article-title":"A review on the use of deep learning for medical images segmentation","author":"Aljabri","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127551_bib16","doi-asserted-by":"crossref","first-page":"1001","DOI":"10.1007\/s40747-022-00815-5","article-title":"Deep learning based brain tumor segmentation: a survey","volume":"9","author":"Liu","year":"2023","journal-title":"Complex Intell. Syst."},{"key":"10.1016\/j.neucom.2024.127551_bib17","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1016\/j.neucom.2022.04.065","article-title":"Medical image segmentation with 3D convolutional neural networks: a survey","volume":"493","author":"Niyas","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127551_bib18","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118996","article-title":"Evolutionary convolutional neural network for efficient brain tumor segmentation and overall survival prediction","volume":"213","author":"Behrad","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2024.127551_bib19","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.cmpb.2019.05.006","article-title":"Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks","volume":"176","author":"Lorenzo","year":"2019","journal-title":"Comput. Methods Prog. Biomed."},{"key":"10.1016\/j.neucom.2024.127551_bib20","doi-asserted-by":"crossref","first-page":"34029","DOI":"10.1109\/ACCESS.2020.2973707","article-title":"An encoder-decoder neural network with 3D squeeze-and-excitation and deep supervision for brain tumor segmentation","volume":"8","author":"Liu","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2024.127551_bib21","article-title":"Multimodal attention-gated cascaded U-Net model for automatic brain tumor detection and segmentation","volume":"78","author":"Chinnam","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.neucom.2024.127551_bib22","doi-asserted-by":"crossref","first-page":"2023","DOI":"10.1007\/s40747-021-00310-3","article-title":"An improved framework for brain tumor analysis using MRI based on YOLOv2 and convolutional neural network","volume":"7","author":"Sharif","year":"2021","journal-title":"Complex Intell. Syst."},{"key":"10.1016\/j.neucom.2024.127551_bib23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11042-022-13215-1","article-title":"Otsu\u2019s thresholding technique for MRI image brain tumor segmentation","volume":"81","author":"Nyo","year":"2022","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.neucom.2024.127551_bib24","doi-asserted-by":"crossref","DOI":"10.1016\/j.biosystems.2020.104226","article-title":"Novel method for segmenting brain tumor using modified watershed algorithm in MRI image with FPGA","volume":"198","author":"Sivakumar","year":"2020","journal-title":"Biosystems"},{"issue":"2","key":"10.1016\/j.neucom.2024.127551_bib25","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1007\/s10278-019-00276-2","article-title":"Three-phase automatic brain tumor diagnosis system using patches based updated run length region growing technique","volume":"33","author":"Kalaiselvi","year":"2020","journal-title":"J. Digit. Imaging"},{"key":"10.1016\/j.neucom.2024.127551_bib26","doi-asserted-by":"crossref","first-page":"136243","DOI":"10.1109\/ACCESS.2020.3009898","article-title":"Optimized edge detection technique for brain tumor detection in MR images","volume":"8","author":"Abdel-Gawad","year":"2020","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.neucom.2024.127551_bib27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the EM algorithm","volume":"39","author":"Dempster","year":"1977","journal-title":"J. R. Stat. Soc.: Ser. B Methodol."},{"key":"10.1016\/j.neucom.2024.127551_bib28","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1093\/biomet\/80.2.267","article-title":"Maximum likelihood estimation via the ECM algorithm: a general framework","volume":"80","author":"Meng","year":"1993","journal-title":"Biometrika"},{"issue":"3","key":"10.1016\/j.neucom.2024.127551_bib29","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1111\/1467-9868.00082","article-title":"The EM algorithm-an old folk-song sung to a fast new tune","volume":"59","author":"Meng","year":"1997","journal-title":"J. R. Stat. Soc. B"},{"issue":"1","key":"10.1016\/j.neucom.2024.127551_bib30","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/0031-3203(86)90030-0","article-title":"Minimum error thresholding","volume":"19","author":"Kittler","year":"1986","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2024.127551_bib31","doi-asserted-by":"crossref","first-page":"16","DOI":"10.5201\/ipol.2014.84","article-title":"Screened poisson equation for image contrast enhancement","volume":"4","author":"Morel","year":"2014","journal-title":"Image Process. Line"},{"issue":"10","key":"10.1016\/j.neucom.2024.127551_bib32","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TMI.2014.2377694","article-title":"The multimodal brain tumor image segmentation benchmark (BRATS)","volume":"34","author":"Menze","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10.1016\/j.neucom.2024.127551_bib33","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2017.117","article-title":"Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features","volume":"4","author":"Bakas","year":"2017","journal-title":"Sci. data"},{"key":"10.1016\/j.neucom.2024.127551_bib34","doi-asserted-by":"crossref","first-page":"1541","DOI":"10.1016\/j.ins.2022.07.044","article-title":"Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation","volume":"608","author":"Ullah","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2024.127551_bib35","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.119166","article-title":"Multiscale lightweight 3D segmentation algorithm with attention mechanism: Brain tumor image segmentation","volume":"214","author":"Liu","year":"2023","journal-title":"Expert Syst. Appl."},{"issue":"3","key":"10.1016\/j.neucom.2024.127551_bib36","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1007\/s11548-022-02566-7","article-title":"Brain tumor segmentation in MRI images using nonparametric localization and enhancement methods with U-net","volume":"17","author":"Ilhan","year":"2022","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"issue":"6","key":"10.1016\/j.neucom.2024.127551_bib37","first-page":"3247","article-title":"Single level UNet3D with multipath residual attention block for brain tumor segmentation","volume":"34","author":"Akbar","year":"2022","journal-title":"J. King Saud. Univ. Comput. Inf. Sci."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224003229?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224003229?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,14]],"date-time":"2024-11-14T08:03:37Z","timestamp":1731571417000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231224003229"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":37,"alternative-id":["S0925231224003229"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127551","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Brain magnetic resonance images segmentation via improved mixtures of factor analyzers based on dynamic co-clustering","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127551","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"127551"}}