{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,13]],"date-time":"2024-11-13T23:10:03Z","timestamp":1731539403069,"version":"3.28.0"},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.neucom.2024.127529","type":"journal-article","created":{"date-parts":[[2024,3,6]],"date-time":"2024-03-06T17:25:31Z","timestamp":1709745931000},"page":"127529","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["An improved asynchronous batch gradient method for ridge polynomial neural network"],"prefix":"10.1016","volume":"581","author":[{"given":"Yan","family":"Xiong","sequence":"first","affiliation":[]},{"given":"Shumei","family":"He","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.neucom.2024.127529_b1","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/72.377967","article-title":"Ridge polynomial networks","volume":"6","author":"Shin","year":"1995","journal-title":"IEEE Trans. Neural Netw."},{"issue":"4","key":"10.1016\/j.neucom.2024.127529_b2","doi-asserted-by":"crossref","first-page":"627","DOI":"10.1016\/0893-6080(96)00006-8","article-title":"A feedforward neural network with function shape autotuning","volume":"9","author":"Chen","year":"1996","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2024.127529_b3","doi-asserted-by":"crossref","first-page":"1721","DOI":"10.1007\/s10489-017-1036-7","article-title":"Dynamic ridge polynomial neural network with Lyapunov function for time series forecasting","volume":"48","author":"Waheeb","year":"2018","journal-title":"Appl. Intell."},{"key":"10.1016\/j.neucom.2024.127529_b4","doi-asserted-by":"crossref","first-page":"9621","DOI":"10.1007\/s00521-019-04474-5","article-title":"A novel error-output recurrent neural network model for time series forecasting","volume":"32","author":"Waheeb","year":"2020","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.neucom.2024.127529_b5","first-page":"126","article-title":"Forecasting the behavior of gas furnace multivariate time series using ridge polynomial based neural network models","volume":"5","author":"Waheeb","year":"2019","journal-title":"Int. J. Interact. Multimed. Artif. Intell."},{"key":"10.1016\/j.neucom.2024.127529_b6","doi-asserted-by":"crossref","first-page":"2359","DOI":"10.1016\/j.neucom.2008.12.005","article-title":"Non-stationary and stationary prediction of financial time series using dynamic ridge polynomial neural network","volume":"72","author":"Ghazali","year":"2009","journal-title":"Neurocomputing"},{"issue":"8","key":"10.1016\/j.neucom.2024.127529_b7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0105766","article-title":"Predicting physical time series using dynamic ridge polynomial neural networks","volume":"9","author":"Al-Jumeily","year":"2014","journal-title":"PLoS One"},{"issue":"4","key":"10.1016\/j.neucom.2024.127529_b8","doi-asserted-by":"crossref","first-page":"3765","DOI":"10.1016\/j.eswa.2010.09.037","article-title":"Dynamic ridge polynomial neural network: forecasting the univariate non-stationary and stationary trading signals","volume":"38","author":"Rozaida","year":"2011","journal-title":"Expert Syst. Appl."},{"issue":"7","key":"10.1016\/j.neucom.2024.127529_b9","first-page":"1989","article-title":"Early warning system for cervical cancer diagnosis using ridge polynomial neural network and chaos optimization algorithm","volume":"96","author":"Dillak","year":"2018","journal-title":"J. Theor. Appl. Inf. Technol."},{"key":"10.1016\/j.neucom.2024.127529_b10","doi-asserted-by":"crossref","unstructured":"R. Dillak, P.W. Sudarmadji, Cervical cancer classification using improved ridge polynomial neural network, in: Proceedings of the 2021 International Conference on Intelligent Cybernetics Technology and Applications, 2021, pp. 96\u2013100.","DOI":"10.1109\/ICICyTA53712.2021.9689203"},{"key":"10.1016\/j.neucom.2024.127529_b11","doi-asserted-by":"crossref","unstructured":"R.U. Ginting, P. Sihombing, S. Efendi, Amila, B. Damanik, Ridge polynomial neural network for brain cancer based on android, in: Proceedings of the 4th International Conference on Cybernetics and Intelligent System, 2022, pp. 1\u20135.","DOI":"10.1109\/ICORIS56080.2022.10031433"},{"issue":"11","key":"10.1016\/j.neucom.2024.127529_b12","first-page":"4280","article-title":"Measuring the accuracy of search interval parameters on ridge polynomial neural network in early detection of brain cancer","volume":"101","author":"Ginting","year":"2023","journal-title":"J. Theor. Appl. Inf. Technol."},{"key":"10.1016\/j.neucom.2024.127529_b13","first-page":"253","article-title":"Penerapan ridge polynomial neural network untuk mencegah penyakit kanker otak","volume":"13","author":"Ginting","year":"2021","journal-title":"Comput. Sci. Res. Dev. J."},{"key":"10.1016\/j.neucom.2024.127529_b14","doi-asserted-by":"crossref","unstructured":"C. Voutriaridis, Y. Boutalis, B. Mertzios, Ridge polynomial networks in pattern recognition, in: Proceedings of the 4th EURASIP Conference Focused on Video\/Image Processing and Multimedia Communications, 2003, pp. 519\u2013524.","DOI":"10.1109\/VIPMC.2003.1220516"},{"key":"10.1016\/j.neucom.2024.127529_b15","series-title":"Applications of Artificial Neural Networks in Image Processing IV","first-page":"58","article-title":"Nonlinear 1D dPCM image prediction using polynomial neural networks","author":"Liatsis","year":"1999"},{"key":"10.1016\/j.neucom.2024.127529_b16","doi-asserted-by":"crossref","unstructured":"S. Zhang, C. Zhang, Z. You, R. Zheng, B. Xu, Asynchronous stochastic gradient descent for dNN training, in: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 6660\u20136663.","DOI":"10.1109\/ICASSP.2013.6638950"},{"key":"10.1016\/j.neucom.2024.127529_b17","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.neucom.2017.06.057","article-title":"Relaxed conditions for convergence analysis of online back-propagation algorithm with L2 regularizer for sigma-pi-sigma neural network","volume":"272","author":"Liu","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127529_b18","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1016\/j.neucom.2012.05.022","article-title":"Convergence of gradient method with penalty for ridge polynomial neural network","volume":"97","author":"Xin","year":"2012","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127529_b19","first-page":"2345","article-title":"Convergence of online gradient method for pi-sigma neural networks","volume":"3","author":"Xiong","year":"2007","journal-title":"J. Comput. Inf. Syst."},{"key":"10.1016\/j.neucom.2024.127529_b20","first-page":"1","article-title":"Asynchronous coordinate descent under more realistic assumptions","volume":"30","author":"Sun","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2024.127529_b21","first-page":"1","article-title":"General proximal incremental aggregated gradient algorithms: better and novel results under general scheme","volume":"32","author":"Sun","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2024.127529_b22","doi-asserted-by":"crossref","unstructured":"X. Deng, T. Sun, S. Li, D. Li, Stability-based generalization analysis of the asynchronous decentralized sgd, in: Proceedings of the 37th AAAI Conference on Artificial Intelligence, 2023, pp. 7340\u20137348.","DOI":"10.1609\/aaai.v37i6.25894"},{"key":"10.1016\/j.neucom.2024.127529_b23","doi-asserted-by":"crossref","first-page":"3356","DOI":"10.1162\/neco.2007.19.12.3356","article-title":"Training pi-sigma network by online gradient algorithm with penalty for small weight update","volume":"19","author":"Xiong","year":"2007","journal-title":"Neural Comput."},{"issue":"12","key":"10.1016\/j.neucom.2024.127529_b24","first-page":"310","article-title":"Activation functions in neural networks","volume":"4","author":"Sharma","year":"2020","journal-title":"Int. J. Eng. Appl. Sci. Technol."},{"issue":"2","key":"10.1016\/j.neucom.2024.127529_b25","first-page":"361","article-title":"The study of neural network adaptive control systems","volume":"7","author":"Hu","year":"1992","journal-title":"Control Decis."},{"key":"10.1016\/j.neucom.2024.127529_b26","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1016\/j.neucom.2004.04.001","article-title":"An activation function adapting training algorithm for sigmoidal feedforward networks","volume":"61","author":"Chandra","year":"2004","journal-title":"Neurocomputing"},{"year":"2018","series-title":"Comparison of non-linear activation functions for deep neural networks on MNIST classification task","author":"Dabal","key":"10.1016\/j.neucom.2024.127529_b27"},{"key":"10.1016\/j.neucom.2024.127529_b28","unstructured":"F. Agostinelli, M. Hoffman, P. Sadowski, P. Baldi, Learning activation functions to improve deep neural networks, in: Proceedings of the 3rd International Conference on Learning Representations, 2015, pp. 1\u20139."},{"key":"10.1016\/j.neucom.2024.127529_b29","doi-asserted-by":"crossref","unstructured":"L. Trottier, P. Gigu, B. Chaib-draa, et al., Parametric exponential linear unit for deep convolutional neural networks, in: Proceedings of the 16th IEEE International Conference on Machine Learning and Applications, 2017, pp. 207\u2013214.","DOI":"10.1109\/ICMLA.2017.00038"},{"key":"10.1016\/j.neucom.2024.127529_b30","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.jcp.2019.109136","article-title":"Adaptive activation functions accelerate convergence in deep and physics-informed neural networks","volume":"404","author":"Jagtap","year":"2020","journal-title":"J. Comput. Phys."},{"key":"10.1016\/j.neucom.2024.127529_b31","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1016\/j.neucom.2017.06.070","article-title":"Adaptive activation functions in convolutional neural networks","volume":"272","author":"Qian","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127529_b32","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.neunet.2021.01.026","article-title":"A survey on modern trainable activation functions","volume":"138","author":"Apicella","year":"2021","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2024.127529_b33","doi-asserted-by":"crossref","first-page":"306","DOI":"10.1016\/j.neucom.2019.11.090","article-title":"Neuroevolutionary based convolutional neural network with adaptive activation functions","volume":"381","author":"ZahediNasab","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127529_b34","doi-asserted-by":"crossref","unstructured":"Y. Shin, J. Ghosh, The pi-sigma network: an efficient higher-order neural network for pattern classification and function approximation, in: IJCNN-91-Seattle International Joint Conference on Neural Networks, Vol 1, 1991, pp. 13\u201318.","DOI":"10.1109\/IJCNN.1991.155142"},{"year":"1997","series-title":"Optimal Theories and Methods","author":"Yuan","key":"10.1016\/j.neucom.2024.127529_b35"},{"year":"2013","series-title":"Banknote authentication","author":"Lohweg","key":"10.1016\/j.neucom.2024.127529_b36"},{"year":"2018","series-title":"Breast cancer coimbra","author":"Patrcio","key":"10.1016\/j.neucom.2024.127529_b37"},{"year":"2020","series-title":"Heart failure clinical records","author":"Chicco","key":"10.1016\/j.neucom.2024.127529_b38"},{"year":"2019","series-title":"Cervical cancer behavior risk","author":"Sobar","key":"10.1016\/j.neucom.2024.127529_b39"},{"year":"1989","series-title":"Ionosphere","author":"Sigillito","key":"10.1016\/j.neucom.2024.127529_b40"},{"year":"2019","series-title":"Divorce predictors data set","author":"Yntem","key":"10.1016\/j.neucom.2024.127529_b41"},{"year":"2015","series-title":"Connectionist bench (sonar, mines vs. rocks)","author":"Sejnowski","key":"10.1016\/j.neucom.2024.127529_b42"},{"year":"2020","series-title":"Tuandromd","author":"Borah","key":"10.1016\/j.neucom.2024.127529_b43"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122400300X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122400300X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,13]],"date-time":"2024-11-13T22:36:54Z","timestamp":1731537414000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092523122400300X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":43,"alternative-id":["S092523122400300X"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127529","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An improved asynchronous batch gradient method for ridge polynomial neural network","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127529","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"127529"}}