{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:19:10Z","timestamp":1735586350969},"reference-count":60,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62373191"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.neucom.2024.127491","type":"journal-article","created":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T16:38:23Z","timestamp":1709829503000},"page":"127491","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Adaptive operator selection with dueling deep Q-network for evolutionary multi-objective optimization"],"prefix":"10.1016","volume":"581","author":[{"given":"Shihong","family":"Yin","sequence":"first","affiliation":[]},{"given":"Zhengrong","family":"Xiang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2024.127491_bib1","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2022.115223","article-title":"An effective multi-objective artificial hummingbird algorithm with dynamic elimination-based crowding distance for solving engineering design problems","volume":"398","author":"Zhao","year":"2022","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.neucom.2024.127491_bib2","doi-asserted-by":"crossref","first-page":"9642","DOI":"10.1109\/TITS.2023.3267103","article-title":"Multi-objective optimization algorithm with adaptive resource allocation for truck-drone collaborative delivery and pick-up services","volume":"24","author":"Luo","year":"2023","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.neucom.2024.127491_bib3","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.120757","article-title":"A multi-objective simulation-based decision support tool for wine supply chain design and risk management under sustainability goals","volume":"232","author":"Vieira","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2024.127491_bib4","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2023.110585","article-title":"An effective multi-objective bald eagle search algorithm for solving engineering design problems","volume":"145","author":"Zhang","year":"2023","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib5","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","article-title":"MOEA\/D: A multiobjective evolutionary algorithm based on decomposition","volume":"11","author":"Zhang","year":"2007","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib6","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: NSGA-II","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib7","series-title":"in: Parallel Probl. Solving Nat. - PPSN VIII","first-page":"832","article-title":"Indicator-based selection in multiobjective search","author":"Zitzler","year":"2004"},{"key":"10.1016\/j.neucom.2024.127491_bib8","first-page":"1","article-title":"Evolutionary large-scale multi-objective optimization: A survey","volume":"54","author":"Tian","year":"2022","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.neucom.2024.127491_bib9","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1109\/4235.585893","article-title":"No free lunch theorems for optimization","volume":"1","author":"Wolpert","year":"1997","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib10","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2023.101248","article-title":"Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms","volume":"77","author":"Ma","year":"2023","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib11","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1023\/A:1008202821328","article-title":"Differential evolution \u2013 A simple and efficient heuristic for global optimization over continuous spaces","volume":"11","author":"Storn","year":"1997","journal-title":"J. Glob. Optim."},{"key":"10.1016\/j.neucom.2024.127491_bib12","series-title":"in: Proc. 9th Annu. Conf. Genet. Evol. Comput","first-page":"1187","article-title":"Self-adaptive simulated binary crossover for real-parameter optimization","author":"Deb","year":"2007"},{"key":"10.1016\/j.neucom.2024.127491_bib13","series-title":"in: MHS95 Proc. Sixth Int. Symp. Micro Mach. Hum. Sci","first-page":"39","article-title":"A new optimizer using particle swarm theory","author":"Eberhart","year":"1995"},{"key":"10.1016\/j.neucom.2024.127491_bib14","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1109\/TAI.2020.3022339","article-title":"A recommender system for metaheuristic algorithms for continuous optimization based on deep recurrent neural networks","volume":"1","author":"Tian","year":"2020","journal-title":"IEEE Trans. Artif. Intell."},{"key":"10.1016\/j.neucom.2024.127491_bib15","first-page":"1","article-title":"Scheduling of continuous annealing with a multi-objective differential evolution algorithm based on deep reinforcement learning","author":"Li","year":"2023","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.neucom.2024.127491_bib16","series-title":"2020 IEEE Congr. Evol. Comput.","first-page":"1","article-title":"Improved multi-operator differential evolution algorithm for solving unconstrained problems","author":"Sallam","year":"2020"},{"key":"10.1016\/j.neucom.2024.127491_bib17","doi-asserted-by":"crossref","DOI":"10.1016\/j.swevo.2023.101236","article-title":"RL-GA: A reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem","volume":"77","author":"Song","year":"2023","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib18","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1109\/TEVC.2013.2239648","article-title":"Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition","volume":"18","author":"Li","year":"2014","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib19","series-title":"Parallel Probl. Solving Nat. \u2013 PPSN XVI, Springer International Publishing, Cham","first-page":"271","article-title":"Adaptive operator selection based on dynamic Thompson sampling for MOEA\/D","author":"Sun","year":"2020"},{"key":"10.1016\/j.neucom.2024.127491_bib20","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.ins.2018.09.005","article-title":"A novel multi-objective evolutionary algorithm with fuzzy logic based adaptive selection of operators: FAME","volume":"471","author":"Santiago","year":"2019","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2024.127491_bib21","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.neucom.2019.12.048","article-title":"AdaBoost-inspired multi-operator ensemble strategy for multi-objective evolutionary algorithms","volume":"384","author":"Wang","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127491_bib22","series-title":"in: Evol. Multi-Criterion Optim.","first-page":"672","article-title":"Operator-adapted evolutionary large-scale multiobjective optimization for voltage transformer ratio error estimation","author":"Huang","year":"2021"},{"key":"10.1016\/j.neucom.2024.127491_bib23","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.ins.2020.10.036","article-title":"Leader recommend operators selection strategy for a multiobjective evolutionary algorithm based on decomposition","volume":"550","author":"Yan","year":"2021","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2024.127491_bib24","first-page":"1","article-title":"Reinforcement learning-based multiobjective evolutionary algorithm for mixed-model multimanned assembly line balancing under uncertain demand","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2024.127491_bib25","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.swevo.2019.06.010","article-title":"Differential evolution based on reinforcement learning with fitness ranking for solving multimodal multiobjective problems","volume":"49","author":"Li","year":"2019","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib26","doi-asserted-by":"crossref","first-page":"1051","DOI":"10.1109\/TETCI.2022.3146882","article-title":"Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization","volume":"7","author":"Tian","year":"2023","journal-title":"IEEE Trans. Emerg. Top. Comput. Intell."},{"key":"10.1016\/j.neucom.2024.127491_bib27","doi-asserted-by":"crossref","unstructured":"Y. Song, Y. Wu, Y. Guo, R. Yan, P.N. Suganthan, Y. Zhang, W. Pedrycz, Y. Chen, S. Das, R. Mallipeddi, O.S. Ajani, Reinforcement learning-assisted evolutionary algorithm: A survey and research opportunities, (2023).","DOI":"10.1016\/j.swevo.2024.101517"},{"key":"10.1016\/j.neucom.2024.127491_bib28","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2023.126628","article-title":"A survey on evolutionary reinforcement learning algorithms","volume":"556","author":"Zhu","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127491_bib29","article-title":"A survey on learnable evolutionary algorithms for scalable multiobjective optimization","author":"Liu","year":"2023","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2022.10.032","article-title":"Optimal consensus of a class of discrete-time linear multi-agent systems via value iteration with guaranteed admissibility","volume":"516","author":"Li","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127491_bib31","doi-asserted-by":"crossref","first-page":"1260","DOI":"10.1109\/TEVC.2022.3199045","article-title":"Hybridization of evolutionary algorithm and deep reinforcement learning for multiobjective orienteering optimization","volume":"27","author":"Liu","year":"2023","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib32","first-page":"1","article-title":"Prescribed-time formation control for a class of multi-agent systems via fuzzy reinforcement learning","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.neucom.2024.127491_bib33","unstructured":"R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction, MIT press, Cambridge, 2018."},{"key":"10.1016\/j.neucom.2024.127491_bib34","unstructured":"R.S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learning with function approximation, in: Adv. Neural Inf. Process. Syst., MIT Press, 1999."},{"key":"10.1016\/j.neucom.2024.127491_bib35","unstructured":"T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous control with deep reinforcement learning, (2019). \u3008https:\/\/doi.org\/10.48550\/arXiv.1509.02971\u3009."},{"key":"10.1016\/j.neucom.2024.127491_bib36","unstructured":"J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms, (2017). \u3008https:\/\/doi.org\/10.48550\/arXiv.1707.06347\u3009."},{"key":"10.1016\/j.neucom.2024.127491_bib37","series-title":"Proc. 33rd Int. Conf. Mach. Learn., PMLR","first-page":"1928","article-title":"Asynchronous methods for deep reinforcement learning","author":"Mnih","year":"2016"},{"key":"10.1016\/j.neucom.2024.127491_bib38","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1007\/BF00992698","article-title":"Q-learning","volume":"8","author":"Watkins","year":"1992","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neucom.2024.127491_bib39","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1038\/nature14236","article-title":"Human-level control through deep reinforcement learning","volume":"518","author":"Mnih","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.neucom.2024.127491_bib40","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.neucom.2022.10.035","article-title":"Multi-objective fuzzy Q-learning to solve continuous state-action problems","volume":"516","author":"Asgharnia","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127491_bib41","article-title":"Deep reinforcement learning with double Q-learning","volume":"30","author":"van Hasselt","year":"2016","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"key":"10.1016\/j.neucom.2024.127491_bib42","series-title":"Proc. 33rd Int. Conf. Mach. Learn., PMLR","first-page":"1995","article-title":"Dueling network architectures for deep reinforcement learning","author":"Wang","year":"2016"},{"key":"10.1016\/j.neucom.2024.127491_bib43","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1162\/evco_a_00269","article-title":"What weights work for you? Adapting weights for any Pareto front shape in decomposition-based evolutionary multi-objective optimisation","volume":"28","author":"Li","year":"2020","journal-title":"Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib44","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1162\/EVCO_a_00109","article-title":"MOEA\/D with adaptive weight adjustment","volume":"22","author":"Qi","year":"2014","journal-title":"Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib45","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1109\/TEVC.2013.2281533","article-title":"Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems","volume":"18","author":"Liu","year":"2014","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib46","series-title":"in: Multi-Object. Evol. Optim. Prod. Des. Manuf.","first-page":"3","article-title":"Multi-objective optimisation using evolutionary algorithms: An introduction","author":"Deb","year":"2011"},{"key":"10.1016\/j.neucom.2024.127491_bib47","series-title":"in: Proc. 7th Annu. Conf. Genet. Evol. Comput","first-page":"257","article-title":"An effective use of crowding distance in multiobjective particle swarm optimization","author":"Raquel","year":"2005"},{"key":"10.1016\/j.neucom.2024.127491_bib48","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1109\/TEVC.2016.2631279","article-title":"Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems","volume":"22","author":"Lin","year":"2018","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib49","doi-asserted-by":"crossref","first-page":"3696","DOI":"10.1109\/TCYB.2019.2906383","article-title":"Efficient large-scale multiobjective optimization based on a competitive swarm optimizer","volume":"50","author":"Tian","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2024.127491_bib50","series-title":"Proc. 2002 Congr. Evol. Comput. CEC02 Cat No02TH8600, IEEE, Honolulu, HI, USA","first-page":"1051","article-title":"MOPSO: A proposal for multiple objective particle swarm optimization","author":"Coello Coello","year":"2002"},{"key":"10.1016\/j.neucom.2024.127491_bib51","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1109\/MCI.2017.2742868","article-title":"PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [Educational Forum","volume":"12","author":"Tian","year":"2017","journal-title":"IEEE Comput. Intell. Mag."},{"key":"10.1016\/j.neucom.2024.127491_bib52","unstructured":"D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, (2017)."},{"key":"10.1016\/j.neucom.2024.127491_bib53","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1162\/106365600568202","article-title":"Comparison of multiobjective evolutionary algorithms: Empirical results","volume":"8","author":"Zitzler","year":"2000","journal-title":"Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib54","series-title":"in: Evol. Multiobjective Optim","first-page":"105","article-title":"Scalable test problems for evolutionary multiobjective optimization","author":"Deb","year":"2005"},{"key":"10.1016\/j.neucom.2024.127491_bib55","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1109\/TEVC.2005.861417","article-title":"A review of multiobjective test problems and a scalable test problem toolkit","volume":"10","author":"Huband","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib56","doi-asserted-by":"crossref","first-page":"1333","DOI":"10.1007\/s42235-022-00307-9","article-title":"IBMSMA: An indicator-based multi-swarm slime mould algorithm for multi-objective truss optimization problems","volume":"20","author":"Yin","year":"2023","journal-title":"J. Bionic Eng."},{"key":"10.1016\/j.neucom.2024.127491_bib57","series-title":"2006 IEEE Int. Conf. Evol. Comput.","first-page":"892","article-title":"Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion","author":"Zhou","year":"2006"},{"key":"10.1016\/j.neucom.2024.127491_bib58","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1109\/TEVC.2005.851275","article-title":"A faster algorithm for calculating hypervolume","volume":"10","author":"While","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.neucom.2024.127491_bib59","author":"Bian","year":"2023","journal-title":"Stoch. Popul. Update Can. provably be Help. multi-Object. Evolut. Algorithms"},{"key":"10.1016\/j.neucom.2024.127491_bib60","doi-asserted-by":"crossref","first-page":"9421","DOI":"10.1038\/s41598-022-13516-3","article-title":"An equilibrium optimizer slime mould algorithm for inverse kinematics of the 7-DOF robotic manipulator","volume":"12","author":"Yin","year":"2022","journal-title":"Sci. Rep."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224002625?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224002625?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,4]],"date-time":"2024-04-04T02:05:27Z","timestamp":1712196327000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231224002625"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":60,"alternative-id":["S0925231224002625"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127491","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adaptive operator selection with dueling deep Q-network for evolutionary multi-objective optimization","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127491","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"127491"}}