{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,13]],"date-time":"2024-11-13T21:40:02Z","timestamp":1731534002992,"version":"3.28.0"},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.neucom.2024.127483","type":"journal-article","created":{"date-parts":[[2024,3,5]],"date-time":"2024-03-05T16:39:19Z","timestamp":1709656759000},"page":"127483","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Incremental Template Neighborhood Matching for 3D anomaly detection"],"prefix":"10.1016","volume":"581","author":[{"given":"Jiaxun","family":"Wang","sequence":"first","affiliation":[]},{"given":"Xiang","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1799-8316","authenticated-orcid":false,"given":"Ruiyang","family":"Hao","sequence":"additional","affiliation":[]},{"given":"Haonan","family":"Yin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5600-7055","authenticated-orcid":false,"given":"Biqing","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Xiao","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Jingxian","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2024.127483_b1","doi-asserted-by":"crossref","unstructured":"J. Yi, S. Yoon, Patch SVDD: Patch-level SVDD for anomaly detection and segmentation, in: Proceedings of the Asian Conference on Computer Vision, 2020.","DOI":"10.1007\/978-3-030-69544-6_23"},{"key":"10.1016\/j.neucom.2024.127483_b2","doi-asserted-by":"crossref","unstructured":"M. Rudolph, B. Wandt, B. Rosenhahn, Same same but differnet: Semi-supervised defect detection with normalizing flows, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 1907\u20131916.","DOI":"10.1109\/WACV48630.2021.00195"},{"key":"10.1016\/j.neucom.2024.127483_b3","doi-asserted-by":"crossref","unstructured":"K. Roth, L. Pemula, J. Zepeda, B. Sch\u00f6lkopf, T. Brox, P. Gehler, Towards total recall in industrial anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 14318\u201314328.","DOI":"10.1109\/CVPR52688.2022.01392"},{"key":"10.1016\/j.neucom.2024.127483_b4","doi-asserted-by":"crossref","DOI":"10.1109\/TIP.2023.3293772","article-title":"Omni-frequency channel-selection representations for unsupervised anomaly detection","author":"Liang","year":"2023","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2024.127483_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2022.101566","article-title":"Efficient surface defect detection using self-supervised learning strategy and segmentation network","volume":"52","author":"Xu","year":"2022","journal-title":"Adv. Eng. Inform."},{"year":"2021","series-title":"Unsupervised two-stage anomaly detection","author":"Liu","key":"10.1016\/j.neucom.2024.127483_b6"},{"key":"10.1016\/j.neucom.2024.127483_b7","doi-asserted-by":"crossref","unstructured":"P. Bergmann, M. Fauser, D. Sattlegger, C. Steger, Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4183\u20134192.","DOI":"10.1109\/CVPR42600.2020.00424"},{"issue":"2","key":"10.1016\/j.neucom.2024.127483_b8","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1109\/TPAMI.2019.2932058","article-title":"Hierarchical deep click feature prediction for fine-grained image recognition","volume":"44","author":"Yu","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2024.127483_b9","doi-asserted-by":"crossref","unstructured":"G. Meishvili, S. Jenni, P. Favaro, Learning to have an ear for face super-resolution, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1364\u20131374.","DOI":"10.1109\/CVPR42600.2020.00144"},{"key":"10.1016\/j.neucom.2024.127483_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.jvcir.2021.103306","article-title":"Visible and thermal images fusion architecture for few-shot semantic segmentation","volume":"80","author":"Bao","year":"2021","journal-title":"J. Vis. Commun. Image Represent."},{"year":"2021","series-title":"The MVTEC 3d-ad dataset for unsupervised 3d anomaly detection and localization","author":"Bergmann","key":"10.1016\/j.neucom.2024.127483_b11"},{"key":"10.1016\/j.neucom.2024.127483_b12","doi-asserted-by":"crossref","unstructured":"M. Rudolph, T. Wehrbein, B. Rosenhahn, B. Wandt, Asymmetric student-teacher networks for industrial anomaly detection, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 2592\u20132602.","DOI":"10.1109\/WACV56688.2023.00262"},{"key":"10.1016\/j.neucom.2024.127483_b13","doi-asserted-by":"crossref","unstructured":"Y. Wang, J. Peng, J. Zhang, R. Yi, Y. Wang, C. Wang, Multimodal Industrial Anomaly Detection via Hybrid Fusion, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8032\u20138041.","DOI":"10.1109\/CVPR52729.2023.00776"},{"key":"10.1016\/j.neucom.2024.127483_b14","series-title":"International Conference on Machine Learning","first-page":"6185","article-title":"Shape-guided dual-memory learning for 3D anomaly detection","author":"Chu","year":"2023"},{"year":"2023","series-title":"EasyNet: An easy network for 3D industrial anomaly detection","author":"Chen","key":"10.1016\/j.neucom.2024.127483_b15"},{"key":"10.1016\/j.neucom.2024.127483_b16","doi-asserted-by":"crossref","unstructured":"E. Horwitz, Y. Hoshen, Back to the feature: classical 3d features are (almost) all you need for 3d anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 2967\u20132976.","DOI":"10.1109\/CVPRW59228.2023.00298"},{"key":"10.1016\/j.neucom.2024.127483_b17","series-title":"ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"1","article-title":"Fapm: Fast adaptive patch memory for real-time industrial anomaly detection","author":"Kim","year":"2023"},{"year":"2023","series-title":"Hard nominal example-aware template mutual matching for industrial anomaly detection","author":"Chen","key":"10.1016\/j.neucom.2024.127483_b18"},{"key":"10.1016\/j.neucom.2024.127483_b19","doi-asserted-by":"crossref","unstructured":"P. Bergmann, M. Fauser, D. Sattlegger, C. Steger, MVTec AD\u2013A comprehensive real-world dataset for unsupervised anomaly detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9592\u20139600.","DOI":"10.1109\/CVPR.2019.00982"},{"issue":"6","key":"10.1016\/j.neucom.2024.127483_b20","doi-asserted-by":"crossref","first-page":"2313","DOI":"10.1109\/TNNLS.2021.3130074","article-title":"MOCCA: Multilayer one-class classification for anomaly detection","volume":"33","author":"Massoli","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2024.127483_b21","unstructured":"C.-L. Li, K. Sohn, J. Yoon, T. Pfister, Cutpaste: Self-supervised learning for anomaly detection and localization, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 9664\u20139674."},{"key":"10.1016\/j.neucom.2024.127483_b22","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2023.105835","article-title":"MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities","volume":"119","author":"Yang","year":"2023","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.neucom.2024.127483_b23","doi-asserted-by":"crossref","unstructured":"Z. Liu, Y. Zhou, Y. Xu, Z. Wang, Simplenet: A simple network for image anomaly detection and localization, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 20402\u201320411.","DOI":"10.1109\/CVPR52729.2023.01954"},{"year":"2020","series-title":"Dfr: Deep feature reconstruction for unsupervised anomaly segmentation","author":"Yang","key":"10.1016\/j.neucom.2024.127483_b24"},{"key":"10.1016\/j.neucom.2024.127483_b25","series-title":"International Conference on Image Analysis and Processing","first-page":"394","article-title":"Inpainting transformer for anomaly detection","author":"Pirnay","year":"2022"},{"year":"2021","series-title":"AnoSeg: anomaly segmentation network using self-supervised learning","author":"Song","key":"10.1016\/j.neucom.2024.127483_b26"},{"year":"2023","series-title":"Anomaly detection with conditioned denoising diffusion models","author":"Mousakhan","key":"10.1016\/j.neucom.2024.127483_b27"},{"year":"2023","series-title":"LafitE: Latent diffusion model with feature editing for unsupervised multi-class anomaly detection","author":"Yin","key":"10.1016\/j.neucom.2024.127483_b28"},{"key":"10.1016\/j.neucom.2024.127483_b29","doi-asserted-by":"crossref","unstructured":"V. Zavrtanik, M. Kristan, D. Sko\u010daj, Draem-a discriminatively trained reconstruction embedding for surface anomaly detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 8330\u20138339.","DOI":"10.1109\/ICCV48922.2021.00822"},{"key":"10.1016\/j.neucom.2024.127483_b30","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108846","article-title":"Informative knowledge distillation for image anomaly segmentation","volume":"248","author":"Cao","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.neucom.2024.127483_b31","series-title":"2022 IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"2725","article-title":"Reconstructed student-teacher and discriminative networks for anomaly detection","author":"Yamada","year":"2022"},{"year":"2023","series-title":"Efficientad: Accurate visual anomaly detection at millisecond-level latencies","author":"Batzner","key":"10.1016\/j.neucom.2024.127483_b32"},{"key":"10.1016\/j.neucom.2024.127483_b33","doi-asserted-by":"crossref","unstructured":"M. Rudolph, T. Wehrbein, B. Rosenhahn, B. Wandt, Fully convolutional cross-scale-flows for image-based defect detection, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 1088\u20131097.","DOI":"10.1109\/WACV51458.2022.00189"},{"key":"10.1016\/j.neucom.2024.127483_b34","doi-asserted-by":"crossref","unstructured":"D. Gudovskiy, S. Ishizaka, K. Kozuka, Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 98\u2013107.","DOI":"10.1109\/WACV51458.2022.00188"},{"year":"2021","series-title":"Fastflow: Unsupervised anomaly detection and localization via 2d normalizing flows","author":"Yu","key":"10.1016\/j.neucom.2024.127483_b35"},{"key":"10.1016\/j.neucom.2024.127483_b36","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1023\/A:1007652502315","article-title":"SPADE: An efficient algorithm for mining frequent sequences","volume":"42","author":"Zaki","year":"2001","journal-title":"Mach. Learn."},{"year":"2022","series-title":"Image anomaly detection and localization with position and neighborhood information","author":"Bae","key":"10.1016\/j.neucom.2024.127483_b37"},{"key":"10.1016\/j.neucom.2024.127483_b38","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","article-title":"Distinctive image features from scale-invariant keypoints","volume":"60","author":"Lowe","year":"2004","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.neucom.2024.127483_b39","series-title":"2009 IEEE International Conference on Robotics and Automation","first-page":"3212","article-title":"Fast point feature histograms (FPFH) for 3D registration","author":"Rusu","year":"2009"},{"key":"10.1016\/j.neucom.2024.127483_b40","doi-asserted-by":"crossref","unstructured":"H. Zhao, L. Jiang, J. Jia, P.H. Torr, V. Koltun, Point transformer, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 16259\u201316268.","DOI":"10.1109\/ICCV48922.2021.01595"},{"key":"10.1016\/j.neucom.2024.127483_b41","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1794","article-title":"Linear spatial pyramid matching using sparse coding for image classification","author":"Yang","year":"2009"},{"key":"10.1016\/j.neucom.2024.127483_b42","series-title":"2009 IEEE 12th International Conference on Computer Vision","first-page":"2272","article-title":"Non-local sparse models for image restoration","author":"Mairal","year":"2009"},{"issue":"5","key":"10.1016\/j.neucom.2024.127483_b43","doi-asserted-by":"crossref","first-page":"2019","DOI":"10.1109\/TIP.2014.2311377","article-title":"Click prediction for web image reranking using multimodal sparse coding","volume":"23","author":"Yu","year":"2014","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2024.127483_b44","unstructured":"C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 652\u2013660."},{"key":"10.1016\/j.neucom.2024.127483_b45","doi-asserted-by":"crossref","unstructured":"B. Ma, Y.-S. Liu, M. Zwicker, Z. Han, Surface reconstruction from point clouds by learning predictive context priors, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 6326\u20136337.","DOI":"10.1109\/CVPR52688.2022.00622"},{"key":"10.1016\/j.neucom.2024.127483_b46","doi-asserted-by":"crossref","unstructured":"P. Bergmann, D. Sattlegger, Anomaly detection in 3d point clouds using deep geometric descriptors, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2023, pp. 2613\u20132623.","DOI":"10.1109\/WACV56688.2023.00264"},{"year":"2023","series-title":"Complementary pseudo multimodal feature for point cloud anomaly detection","author":"Cao","key":"10.1016\/j.neucom.2024.127483_b47"},{"year":"2016","series-title":"Template matching advances and applications in image analysis","author":"Hashemi","key":"10.1016\/j.neucom.2024.127483_b48"},{"key":"10.1016\/j.neucom.2024.127483_b49","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.isprsjprs.2020.10.003","article-title":"Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation","volume":"171","author":"Yazdan","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"year":"2022","series-title":"A survey of face recognition","author":"Wang","key":"10.1016\/j.neucom.2024.127483_b50"},{"key":"10.1016\/j.neucom.2024.127483_b51","doi-asserted-by":"crossref","unstructured":"H. Phan, A. Nguyen, DeepFace-EMD: Re-Ranking Using Patch-Wise Earth Mover\u2019s Distance Improves Out-of-Distribution Face Identification, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2022, pp. 20259\u201320269.","DOI":"10.1109\/CVPR52688.2022.01962"},{"issue":"1","key":"10.1016\/j.neucom.2024.127483_b52","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1007\/s10462-022-10176-7","article-title":"Deep learning for video object segmentation: a review","volume":"56","author":"Gao","year":"2023","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.neucom.2024.127483_b53","doi-asserted-by":"crossref","unstructured":"H. Seong, S.W. Oh, J.-Y. Lee, S. Lee, S. Lee, E. Kim, Hierarchical memory matching network for video object segmentation, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 12889\u201312898.","DOI":"10.1109\/ICCV48922.2021.01265"},{"year":"2016","series-title":"Wide residual networks","author":"Zagoruyko","key":"10.1016\/j.neucom.2024.127483_b54"},{"issue":"4","key":"10.1016\/j.neucom.2024.127483_b55","doi-asserted-by":"crossref","first-page":"947","DOI":"10.1007\/s11263-022-01578-9","article-title":"Beyond dents and scratches: Logical constraints in unsupervised anomaly detection and localization","volume":"130","author":"Bergmann","year":"2022","journal-title":"Int. J. Comput. Vis."},{"issue":"1\u20133","key":"10.1016\/j.neucom.2024.127483_b56","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/0169-7439(87)80084-9","article-title":"Principal component analysis","volume":"2","author":"Wold","year":"1987","journal-title":"Chemometr. Intell. Laborat. Syst."},{"key":"10.1016\/j.neucom.2024.127483_b57","doi-asserted-by":"crossref","unstructured":"M. Caron, H. Touvron, I. Misra, H. J\u00e9gou, J. Mairal, P. Bojanowski, A. Joulin, Emerging properties in self-supervised vision transformers, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 9650\u20139660.","DOI":"10.1109\/ICCV48922.2021.00951"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224002546?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224002546?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,13]],"date-time":"2024-11-13T21:22:44Z","timestamp":1731532964000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231224002546"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":57,"alternative-id":["S0925231224002546"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127483","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Incremental Template Neighborhood Matching for 3D anomaly detection","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127483","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"127483"}}