{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T00:32:27Z","timestamp":1724459547334},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62273264"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.neucom.2024.127476","type":"journal-article","created":{"date-parts":[[2024,3,6]],"date-time":"2024-03-06T08:12:38Z","timestamp":1709712758000},"page":"127476","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["BEV feature exchange pyramid networks-based 3D object detection in small and distant situations: A decentralized federated learning framework"],"prefix":"10.1016","volume":"583","author":[{"ORCID":"http:\/\/orcid.org\/0009-0008-4494-2709","authenticated-orcid":false,"given":"Rukai","family":"Lan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1537-4588","authenticated-orcid":false,"given":"Yong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Linbo","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Zhaolong","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Yifan","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2024.127476_b1","first-page":"10421","article-title":"Bevfusion: A simple and robust lidar-camera fusion framework","volume":"35","author":"Liang","year":"2022","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2024.127476_b2","doi-asserted-by":"crossref","unstructured":"Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, Oscar Beijbom, Pointpillars: Fast encoders for object detection from point clouds, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12697\u201312705.","DOI":"10.1109\/CVPR.2019.01298"},{"key":"10.1016\/j.neucom.2024.127476_b3","series-title":"Class-balanced grouping and sampling for point cloud 3d object detection","author":"Zhu","year":"2019"},{"key":"10.1016\/j.neucom.2024.127476_b4","unstructured":"Tianwei Yin, Xingyi Zhou, Philipp Krahenbuhl, Center-based 3d object detection and tracking, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11784\u201311793."},{"key":"10.1016\/j.neucom.2024.127476_b5","doi-asserted-by":"crossref","unstructured":"Sourabh Vora, Alex H. Lang, Bassam Helou, Oscar Beijbom, Pointpainting: Sequential fusion for 3d object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4604\u20134612.","DOI":"10.1109\/CVPR42600.2020.00466"},{"key":"10.1016\/j.neucom.2024.127476_b6","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XXVII 16","first-page":"720","article-title":"3d-cvf: Generating joint camera and lidar features using cross-view spatial feature fusion for 3d object detection","author":"Yoo","year":"2020"},{"key":"10.1016\/j.neucom.2024.127476_b7","first-page":"16494","article-title":"Multimodal virtual point 3d detection","volume":"34","author":"Yin","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.neucom.2024.127476_b8","series-title":"2021 IEEE International Intelligent Transportation Systems Conference","first-page":"3047","article-title":"Fusionpainting: Multimodal fusion with adaptive attention for 3d object detection","author":"Xu","year":"2021"},{"key":"10.1016\/j.neucom.2024.127476_b9","unstructured":"Xuyang Bai, Zeyu Hu, Xinge Zhu, Qingqiu Huang, Yilun Chen, Hongbo Fu, Chiew-Lan Tai, Transfusion: Robust lidar-camera fusion for 3d object detection with transformers, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 1090\u20131099."},{"key":"10.1016\/j.neucom.2024.127476_b10","series-title":"SemanticBEVFusion: Rethink LiDAR-camera fusion in unified bird\u2019s-eye view representation for 3D object detection","author":"Jiang","year":"2022"},{"issue":"11","key":"10.1016\/j.neucom.2024.127476_b11","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.1177\/0278364913491297","article-title":"Vision meets robotics: The kitti dataset","volume":"32","author":"Geiger","year":"2013","journal-title":"Int. J. Robot. Res."},{"key":"10.1016\/j.neucom.2024.127476_b12","doi-asserted-by":"crossref","unstructured":"Yan Lu, Xinzhu Ma, Lei Yang, Tianzhu Zhang, Yating Liu, Qi Chu, Junjie Yan, Wanli Ouyang, Geometry uncertainty projection network for monocular 3d object detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 3111\u20133121.","DOI":"10.1109\/ICCV48922.2021.00310"},{"key":"10.1016\/j.neucom.2024.127476_b13","doi-asserted-by":"crossref","unstructured":"Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, Oscar Beijbom, nuscenes: A multimodal dataset for autonomous driving, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11621\u201311631.","DOI":"10.1109\/CVPR42600.2020.01164"},{"key":"10.1016\/j.neucom.2024.127476_b14","doi-asserted-by":"crossref","unstructured":"Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al., Scalability in perception for autonomous driving: Waymo open dataset, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2446\u20132454.","DOI":"10.1109\/CVPR42600.2020.00252"},{"key":"10.1016\/j.neucom.2024.127476_b15","doi-asserted-by":"crossref","unstructured":"Tai Wang, Xinge Zhu, Jiangmiao Pang, Dahua Lin, Fcos3d: Fully convolutional one-stage monocular 3d object detection, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 913\u2013922.","DOI":"10.1109\/ICCVW54120.2021.00107"},{"key":"10.1016\/j.neucom.2024.127476_b16","doi-asserted-by":"crossref","unstructured":"Tong He, Stefano Soatto, Mono3d++: Monocular 3d vehicle detection with two-scale 3d hypotheses and task priors, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 8409\u20138416.","DOI":"10.1609\/aaai.v33i01.33018409"},{"key":"10.1016\/j.neucom.2024.127476_b17","doi-asserted-by":"crossref","unstructured":"Zechen Liu, Zizhang Wu, Roland T\u00f3th, Smoke: Single-stage monocular 3d object detection via keypoint estimation, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 996\u2013997.","DOI":"10.1109\/CVPRW50498.2020.00506"},{"key":"10.1016\/j.neucom.2024.127476_b18","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XIV 16","first-page":"194","article-title":"Lift, splat, shoot: Encoding images from arbitrary camera rigs by implicitly unprojecting to 3d","author":"Philion","year":"2020"},{"key":"10.1016\/j.neucom.2024.127476_b19","doi-asserted-by":"crossref","unstructured":"Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas, Pointnet: Deep learning on point sets for 3d classification and segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 652\u2013660.","DOI":"10.1109\/CVPR.2017.16"},{"key":"10.1016\/j.neucom.2024.127476_b20","first-page":"100005","article-title":"FSS-net: A fast search structure for 3D point clouds in deep learning","author":"Wang","year":"2023","journal-title":"Int. J. Netw. Dyn. Intell."},{"issue":"10","key":"10.1016\/j.neucom.2024.127476_b21","doi-asserted-by":"crossref","first-page":"3337","DOI":"10.3390\/s18103337","article-title":"Second: Sparsely embedded convolutional detection","volume":"18","author":"Yan","year":"2018","journal-title":"Sensors"},{"key":"10.1016\/j.neucom.2024.127476_b22","doi-asserted-by":"crossref","unstructured":"Yin Zhou, Oncel Tuzel, Voxelnet: End-to-end learning for point cloud based 3d object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 4490\u20134499.","DOI":"10.1109\/CVPR.2018.00472"},{"key":"10.1016\/j.neucom.2024.127476_b23","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XXII 16","first-page":"18","article-title":"Pillar-based object detection for autonomous driving","author":"Wang","year":"2020"},{"key":"10.1016\/j.neucom.2024.127476_b24","doi-asserted-by":"crossref","unstructured":"Bin Yang, Wenjie Luo, Raquel Urtasun, Pixor: Real-time 3d object detection from point clouds, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7652\u20137660.","DOI":"10.1109\/CVPR.2018.00798"},{"key":"10.1016\/j.neucom.2024.127476_b25","series-title":"MotionBEV: Attention-aware online LiDAR moving object segmentation with bird\u2019s eye view based appearance and motion features","author":"Zhou","year":"2023"},{"key":"10.1016\/j.neucom.2024.127476_b26","series-title":"Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part XV 16","first-page":"35","article-title":"Epnet: Enhancing point features with image semantics for 3d object detection","author":"Huang","year":"2020"},{"key":"10.1016\/j.neucom.2024.127476_b27","doi-asserted-by":"crossref","unstructured":"Chunwei Wang, Chao Ma, Ming Zhu, Xiaokang Yang, Pointaugmenting: Cross-modal augmentation for 3d object detection, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11794\u201311803.","DOI":"10.1109\/CVPR46437.2021.01162"},{"key":"10.1016\/j.neucom.2024.127476_b28","series-title":"2019 IEEE Intelligent Vehicles Symposium","first-page":"2510","article-title":"Roarnet: A robust 3d object detection based on region approximation refinement","author":"Shin","year":"2019"},{"key":"10.1016\/j.neucom.2024.127476_b29","series-title":"Autoalignv2: Deformable feature aggregation for dynamic multi-modal 3d object detection","author":"Chen","year":"2022"},{"key":"10.1016\/j.neucom.2024.127476_b30","series-title":"DeceFL: A principled decentralized federated learning framework","author":"Yuan","year":"2021"},{"key":"10.1016\/j.neucom.2024.127476_b31","doi-asserted-by":"crossref","unstructured":"Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, Yong Zhang, Personalized cross-silo federated learning on non-iid data, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 9, 2021, pp. 7865\u20137873.","DOI":"10.1609\/aaai.v35i9.16960"},{"key":"10.1016\/j.neucom.2024.127476_b32","series-title":"International Conference on Machine Learning","first-page":"5132","article-title":"Scaffold: Stochastic controlled averaging for federated learning","author":"Karimireddy","year":"2020"},{"key":"10.1016\/j.neucom.2024.127476_b33","doi-asserted-by":"crossref","unstructured":"Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2021, pp. 10012\u201310022.","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"10.1016\/j.neucom.2024.127476_b34","first-page":"93","article-title":"Deep learning attention mechanism in medical image analysis: Basics and beyonds","author":"Li","year":"2023","journal-title":"Int. J. Netw. Dyn. Intell."},{"issue":"1","key":"10.1016\/j.neucom.2024.127476_b35","doi-asserted-by":"crossref","first-page":"722","DOI":"10.1080\/21642583.2022.2110541","article-title":"Segmentation and weight prediction of grape ear based on SFNet-ResNet18","volume":"10","author":"Liang","year":"2022","journal-title":"Syst. Sci. Control Eng."},{"key":"10.1016\/j.neucom.2024.127476_b36","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1016\/j.neucom.2022.06.076","article-title":"A semi-supervised learning approach for COVID-19 detection from chest CT scans","volume":"503","author":"Zhang","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127476_b37","article-title":"Unsupervised ship detection in SAR imagery based on energy density-induced clustering","author":"Yuan","year":"2023","journal-title":"Int. J. Netw. Dyn. Intell."},{"key":"10.1016\/j.neucom.2024.127476_b38","doi-asserted-by":"crossref","DOI":"10.1109\/TNSRE.2023.3314679","article-title":"Spatial variation generation algorithm for motor imagery data augmentation: Increasing the density of sample vicinity","author":"Qin","year":"2023","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.neucom.2024.127476_b39","first-page":"1","article-title":"A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection","volume":"71","author":"Zeng","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"1","key":"10.1016\/j.neucom.2024.127476_b40","doi-asserted-by":"crossref","first-page":"616","DOI":"10.1080\/21642583.2022.2087786","article-title":"Surface microseismic data denoising based on sparse autoencoder and Kalman filter","volume":"10","author":"Li","year":"2022","journal-title":"Syst. Sci. Control Eng."},{"key":"10.1016\/j.neucom.2024.127476_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109573","article-title":"Health state assessment of bearing with feature enhancement and prediction error compensation strategy","volume":"182","author":"Zhang","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.neucom.2024.127476_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108263","article-title":"Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE","volume":"220","author":"Zhang","year":"2022","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.neucom.2024.127476_b43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2022.3220285","article-title":"Bearing remaining useful life prediction based on regression shapalet and graph neural network","volume":"71","author":"Yang","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224002479?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224002479?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,7]],"date-time":"2024-04-07T05:05:20Z","timestamp":1712466320000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231224002479"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":43,"alternative-id":["S0925231224002479"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127476","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"BEV feature exchange pyramid networks-based 3D object detection in small and distant situations: A decentralized federated learning framework","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127476","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"127476"}}