{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,25]],"date-time":"2024-07-25T07:20:26Z","timestamp":1721892026180},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001409","name":"Department of Science and Technology, Ministry of Science and Technology, India","doi-asserted-by":"publisher","award":["SR\/FST\/ET-I\/2017\/75"],"id":[{"id":"10.13039\/501100001409","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.neucom.2024.127473","type":"journal-article","created":{"date-parts":[[2024,3,6]],"date-time":"2024-03-06T17:24:22Z","timestamp":1709745862000},"page":"127473","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Noise aware content-noise complementary GAN with local and global discrimination for low-dose CT denoising"],"prefix":"10.1016","volume":"582","author":[{"ORCID":"http:\/\/orcid.org\/0009-0004-6978-6600","authenticated-orcid":false,"given":"Kousik","family":"Sarkar","sequence":"first","affiliation":[]},{"given":"Soumen","family":"Bag","sequence":"additional","affiliation":[]},{"given":"Prasun Chandra","family":"Tripathi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"22","key":"10.1016\/j.neucom.2024.127473_b1","doi-asserted-by":"crossref","first-page":"2277","DOI":"10.1056\/NEJMra072149","article-title":"Computed tomography\u2014an increasing source of radiation exposure","volume":"357","author":"Brenner","year":"2007","journal-title":"N. Engl. J. Med."},{"issue":"3","key":"10.1016\/j.neucom.2024.127473_b2","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1097\/MOP.0b013e3282ffafd2","article-title":"ALARA: is there a cause for alarm? Reducing radiation risks from computed tomography scanning in children","volume":"20","author":"Shah","year":"2008","journal-title":"Curr. Opin. Pediatr."},{"key":"10.1016\/j.neucom.2024.127473_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101628","article-title":"Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping","volume":"60","author":"Lei","year":"2020","journal-title":"Med. Image Anal."},{"issue":"2","key":"10.1016\/j.neucom.2024.127473_b4","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1364\/BOE.8.000679","article-title":"Low-dose CT via convolutional neural network","volume":"8","author":"Chen","year":"2017","journal-title":"Biomed. Opt. Express"},{"issue":"6","key":"10.1016\/j.neucom.2024.127473_b5","doi-asserted-by":"crossref","first-page":"2973","DOI":"10.1002\/mp.14856","article-title":"Incorporation of residual attention modules into two neural networks for low-dose CT denoising","volume":"48","author":"Li","year":"2021","journal-title":"Med. Phys."},{"key":"10.1016\/j.neucom.2024.127473_b6","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1016\/j.neucom.2020.10.118","article-title":"Denoising of MR and CT images using cascaded multi-supervision convolutional neural networks with progressive training","volume":"469","author":"Song","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127473_b7","first-page":"1","article-title":"Multi-scale self-attention generative adversarial network for pathology image restoration","author":"Liang","year":"2022","journal-title":"Vis. Comput."},{"issue":"12","key":"10.1016\/j.neucom.2024.127473_b8","doi-asserted-by":"crossref","first-page":"2524","DOI":"10.1109\/TMI.2017.2715284","article-title":"Low-dose CT with a residual encoder-decoder convolutional neural network","volume":"36","author":"Chen","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"6","key":"10.1016\/j.neucom.2024.127473_b9","doi-asserted-by":"crossref","first-page":"2035","DOI":"10.1109\/TMI.2019.2963248","article-title":"Quadratic Autoencoder (Q-AE) for low-dose CT denoising","volume":"39","author":"Fan","year":"2019","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"6","key":"10.1016\/j.neucom.2024.127473_b10","doi-asserted-by":"crossref","first-page":"1348","DOI":"10.1109\/TMI.2018.2827462","article-title":"Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss","volume":"37","author":"Yang","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2024.127473_b11","doi-asserted-by":"crossref","first-page":"655","DOI":"10.1007\/s10278-018-0056-0","article-title":"Sharpness-aware low-dose CT denoising using conditional generative adversarial network","volume":"31","author":"Yi","year":"2018","journal-title":"J. Digit. Imaging"},{"issue":"6","key":"10.1016\/j.neucom.2024.127473_b12","doi-asserted-by":"crossref","first-page":"1522","DOI":"10.1109\/TMI.2018.2832217","article-title":"3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network","volume":"37","author":"Shan","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"2","key":"10.1016\/j.neucom.2024.127473_b13","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1109\/TMI.2021.3113365","article-title":"Content-noise complementary learning for medical image denoising","volume":"41","author":"Geng","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2024.127473_b14","doi-asserted-by":"crossref","first-page":"67519","DOI":"10.1109\/ACCESS.2020.2986388","article-title":"Low-dose CT image denoising using a generative adversarial network with a hybrid loss function for noise learning","volume":"8","author":"Ma","year":"2020","journal-title":"IEEE Access"},{"issue":"7","key":"10.1016\/j.neucom.2024.127473_b15","doi-asserted-by":"crossref","first-page":"3142","DOI":"10.1109\/TIP.2017.2662206","article-title":"Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising","volume":"26","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2024.127473_b16","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1016\/j.neunet.2019.08.022","article-title":"Image denoising using deep CNN with batch renormalization","volume":"121","author":"Tian","year":"2020","journal-title":"Neural Netw."},{"issue":"16","key":"10.1016\/j.neucom.2024.127473_b17","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ab3242","article-title":"An investigation of quantitative accuracy for deep learning based denoising in oncological PET","volume":"64","author":"Lu","year":"2019","journal-title":"Phys. Med. Biol."},{"issue":"12","key":"10.1016\/j.neucom.2024.127473_b18","doi-asserted-by":"crossref","first-page":"3663","DOI":"10.1109\/TMI.2021.3094525","article-title":"Noise conscious training of non local neural network powered by self attentive spectral normalized Markovian patch GAN for low dose CT denoising","volume":"40","author":"Bera","year":"2021","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2024.127473_b19","doi-asserted-by":"crossref","unstructured":"E. Schonfeld, B. Schiele, A. Khoreva, A u-net based discriminator for generative adversarial networks, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 8207\u20138216.","DOI":"10.1109\/CVPR42600.2020.00823"},{"key":"10.1016\/j.neucom.2024.127473_b20","doi-asserted-by":"crossref","unstructured":"C.H. Lin, C.-C. Chang, Y.-S. Chen, D.-C. Juan, W. Wei, H.-T. Chen, Coco-gan: Generation by parts via conditional coordinating, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, 2019, pp. 4512\u20134521.","DOI":"10.1109\/ICCV.2019.00461"},{"key":"10.1016\/j.neucom.2024.127473_b21","doi-asserted-by":"crossref","unstructured":"P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1125\u20131134.","DOI":"10.1109\/CVPR.2017.632"},{"issue":"10","key":"10.1016\/j.neucom.2024.127473_b22","doi-asserted-by":"crossref","first-page":"1272","DOI":"10.1109\/TMI.2006.882141","article-title":"Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography","volume":"25","author":"Wang","year":"2006","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"11","key":"10.1016\/j.neucom.2024.127473_b23","doi-asserted-by":"crossref","first-page":"4911","DOI":"10.1118\/1.3232004","article-title":"Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT","volume":"36","author":"Manduca","year":"2009","journal-title":"Med. Phys."},{"issue":"7","key":"10.1016\/j.neucom.2024.127473_b24","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1016\/j.compmedimag.2008.12.007","article-title":"Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior","volume":"33","author":"Chen","year":"2009","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.neucom.2024.127473_b25","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1007\/s10851-007-0042-5","article-title":"Nonlocal prior Bayesian tomographic reconstruction","volume":"30","author":"Chen","year":"2008","journal-title":"J. Math. Imaging Vision"},{"key":"10.1016\/j.neucom.2024.127473_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2022.104204","article-title":"Iterative reconstruction of low-dose CT based on differential sparse","volume":"79","author":"Lu","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.neucom.2024.127473_b27","series-title":"Medical Imaging 2013: Image Processing","first-page":"671","article-title":"Image denoising of low-radiation dose coronary CT angiography by an adaptive block-matching 3D algorithm","volume":"Vol. 8669","author":"Kang","year":"2013"},{"issue":"10","key":"10.1016\/j.neucom.2024.127473_b28","doi-asserted-by":"crossref","first-page":"1585","DOI":"10.1109\/TMI.2009.2022368","article-title":"Noise reduction in computed tomography scans using 3-D anisotropic hybrid diffusion with continuous switch","volume":"28","author":"Mendrik","year":"2009","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"10","key":"10.1016\/j.neucom.2024.127473_b29","doi-asserted-by":"crossref","first-page":"5713","DOI":"10.1118\/1.3638125","article-title":"Low-dose computed tomography image restoration using previous normal-dose scan","volume":"38","author":"Ma","year":"2011","journal-title":"Med. Phys."},{"issue":"10","key":"10.1016\/j.neucom.2024.127473_b30","doi-asserted-by":"crossref","first-page":"e360","DOI":"10.1002\/mp.12344","article-title":"A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction","volume":"44","author":"Kang","year":"2017","journal-title":"Med. Phys."},{"key":"10.1016\/j.neucom.2024.127473_b31","series-title":"2018 IEEE 15th International Symposium on Biomedical Imaging","first-page":"311","article-title":"Framelet denoising for low-dose CT using deep learning","author":"Kang","year":"2018"},{"issue":"6","key":"10.1016\/j.neucom.2024.127473_b32","doi-asserted-by":"crossref","first-page":"1358","DOI":"10.1109\/TMI.2018.2823756","article-title":"Deep convolutional framelet denosing for low-dose CT via wavelet residual network","volume":"37","author":"Kang","year":"2018","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2024.127473_b33","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.artmed.2018.12.006","article-title":"Denoising of low-dose CT images via low-rank tensor modeling and total variation regularization","volume":"94","author":"Sagheer","year":"2019","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/j.neucom.2024.127473_b34","doi-asserted-by":"crossref","first-page":"510","DOI":"10.1016\/j.neucom.2020.10.004","article-title":"Low-dose CT image denoising using residual convolutional network with fractional TV loss","volume":"452","author":"Chen","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127473_b35","doi-asserted-by":"crossref","first-page":"1375","DOI":"10.1109\/TCI.2020.3023598","article-title":"Contrast-medium anisotropy-aware tensor total variation model for robust cerebral perfusion CT reconstruction with low-dose scans","volume":"6","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Comput. Imaging"},{"issue":"11","key":"10.1016\/j.neucom.2024.127473_b36","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1145\/3422622","article-title":"Generative adversarial networks","volume":"63","author":"Goodfellow","year":"2020","journal-title":"Commun. ACM"},{"issue":"12","key":"10.1016\/j.neucom.2024.127473_b37","doi-asserted-by":"crossref","first-page":"2536","DOI":"10.1109\/TMI.2017.2708987","article-title":"Generative adversarial networks for noise reduction in low-dose CT","volume":"36","author":"Wolterink","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2024.127473_b38","series-title":"International Conference on Machine Learning","first-page":"214","article-title":"Wasserstein generative adversarial networks","author":"Arjovsky","year":"2017"},{"issue":"7","key":"10.1016\/j.neucom.2024.127473_b39","doi-asserted-by":"crossref","first-page":"2289","DOI":"10.1109\/TMI.2020.2968472","article-title":"SACNN: Self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network","volume":"39","author":"Li","year":"2020","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2024.127473_b40","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/j.neucom.2022.04.040","article-title":"CT image quality enhancement via a dual-channel neural network with jointing denoising and super-resolution","volume":"492","author":"Hou","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2024.127473_b41","series-title":"Medical Image Computing and Computer-Assisted Intervention\u2013MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.neucom.2024.127473_b42","doi-asserted-by":"crossref","unstructured":"T. Chen, X. Zhai, M. Ritter, M. Lucic, N. Houlsby, Self-supervised gans via auxiliary rotation loss, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12154\u201312163.","DOI":"10.1109\/CVPR.2019.01243"},{"key":"10.1016\/j.neucom.2024.127473_b43","doi-asserted-by":"crossref","unstructured":"J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132\u20137141.","DOI":"10.1109\/CVPR.2018.00745"},{"key":"10.1016\/j.neucom.2024.127473_b44","doi-asserted-by":"crossref","unstructured":"S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3\u201319.","DOI":"10.1007\/978-3-030-01234-2_1"},{"issue":"10","key":"10.1016\/j.neucom.2024.127473_b45","doi-asserted-by":"crossref","first-page":"e339","DOI":"10.1002\/mp.12345","article-title":"Low-dose CT for the detection and classification of metastatic liver lesions: results of the 2016 low dose CT grand challenge","volume":"44","author":"McCollough","year":"2017","journal-title":"Med. Phys."},{"issue":"13","key":"10.1016\/j.neucom.2024.127473_b46","doi-asserted-by":"crossref","first-page":"800","DOI":"10.1049\/el:20080522","article-title":"Scope of validity of PSNR in image\/video quality assessment","volume":"44","author":"Huynh-Thu","year":"2008","journal-title":"Electron. Lett."},{"key":"10.1016\/j.neucom.2024.127473_b47","unstructured":"G. Brassington, Mean absolute error and root mean square error: which is the better metric for assessing model performance?, in: EGU General Assembly Conference Abstracts, 2017, p. 3574."},{"issue":"4","key":"10.1016\/j.neucom.2024.127473_b48","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2024.127473_b49","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.neunet.2019.12.024","article-title":"Attention-guided CNN for image denoising","volume":"124","author":"Tian","year":"2020","journal-title":"Neural Netw."},{"key":"10.1016\/j.neucom.2024.127473_b50","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1007\/s11517-020-02312-8","article-title":"Joint low-rank prior and difference of Gaussian filter for magnetic resonance image denoising","volume":"59","author":"Chen","year":"2021","journal-title":"Med. Biol. Eng. Comput."},{"issue":"3","key":"10.1016\/j.neucom.2024.127473_b51","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1109\/TMI.2021.3117996","article-title":"Beyond mutual information: Generative adversarial network for domain adaptation using information bottleneck constraint","volume":"41","author":"Chen","year":"2021","journal-title":"IEEE Trans. Med. Imaging"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224002443?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231224002443?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,3]],"date-time":"2024-04-03T18:00:00Z","timestamp":1712167200000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231224002443"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":51,"alternative-id":["S0925231224002443"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127473","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Noise aware content-noise complementary GAN with local and global discrimination for low-dose CT denoising","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2024.127473","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"127473"}}