{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,23]],"date-time":"2025-04-23T08:51:01Z","timestamp":1745398261986,"version":"3.37.3"},"reference-count":66,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,10,1]],"date-time":"2023-10-01T00:00:00Z","timestamp":1696118400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,7]],"date-time":"2023-08-07T00:00:00Z","timestamp":1691366400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000781","name":"European Research Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000781","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010663","name":"European Research Council","doi-asserted-by":"publisher","award":["951424"],"id":[{"id":"10.13039\/100010663","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,10]]},"DOI":"10.1016\/j.neucom.2023.126640","type":"journal-article","created":{"date-parts":[[2023,7,29]],"date-time":"2023-07-29T01:18:55Z","timestamp":1690593535000},"page":"126640","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"special_numbering":"C","title":["Model-based explanations of concept drift"],"prefix":"10.1016","volume":"555","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-1199-4085","authenticated-orcid":false,"given":"Fabian","family":"Hinder","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7659-857X","authenticated-orcid":false,"given":"Valerie","family":"Vaquet","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0032-7623","authenticated-orcid":false,"given":"Johannes","family":"Brinkrolf","sequence":"additional","affiliation":[]},{"given":"Barbara","family":"Hammer","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9\u201310","key":"10.1016\/j.neucom.2023.126640_b1","article-title":"IoT data stream analytics","volume":"75","author":"Bifet","year":"2020","journal-title":"Ann. des T\u00e9l\u00e9comm."},{"issue":"5","key":"10.1016\/j.neucom.2023.126640_b2","doi-asserted-by":"crossref","DOI":"10.1002\/widm.1256","article-title":"Social network analysis: An overview","volume":"8","author":"Tabassum","year":"2018","journal-title":"Wiley Interdiscip. Rev. Data Min. Knowl. Discov."},{"issue":"4","key":"10.1016\/j.neucom.2023.126640_b3","article-title":"Learning in nonstationary environments: A survey","volume":"10","author":"Ditzler","year":"2015","journal-title":"IEEE Comp. Int. Mag."},{"issue":"2","key":"10.1016\/j.neucom.2023.126640_b4","doi-asserted-by":"crossref","DOI":"10.1007\/s10115-016-0987-z","article-title":"A survey of methods for time series change point detection","volume":"51","author":"Aminikhanghahi","year":"2017","journal-title":"Knowl. Inf. Syst."},{"issue":"2","key":"10.1016\/j.neucom.2023.126640_b5","doi-asserted-by":"crossref","DOI":"10.1007\/s10115-018-1257-z","article-title":"Survey of distance measures for quantifying concept drift and shift in numeric data","volume":"60","author":"Goldenberg","year":"2019","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.neucom.2023.126640_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.cose.2022.102757","article-title":"Concept drift and cross-device behavior: Challenges and implications for effective android malware detection","volume":"120","author":"Guerra-Manzanares","year":"2022","journal-title":"Comput. Secur."},{"issue":"4","key":"10.1016\/j.neucom.2023.126640_b7","doi-asserted-by":"crossref","first-page":"682","DOI":"10.3390\/en12040682","article-title":"A survey on power system blackout and cascading events: Research motivations and challenges","volume":"12","author":"Haes Alhelou","year":"2019","journal-title":"Energies"},{"issue":"6","key":"10.1016\/j.neucom.2023.126640_b8","doi-asserted-by":"crossref","first-page":"1254","DOI":"10.1109\/TCST.2009.2035515","article-title":"A fault diagnosis and security framework for water systems","volume":"18","author":"Eliades","year":"2010","journal-title":"IEEE Trans. Control Syst. Technol."},{"issue":"5","key":"10.1016\/j.neucom.2023.126640_b9","doi-asserted-by":"crossref","DOI":"10.1145\/3236009","article-title":"A survey of methods for explaining black box models","volume":"51","author":"Guidotti","year":"2018","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.neucom.2023.126640_b10","doi-asserted-by":"crossref","unstructured":"M.T. Ribeiro, S. Singh, C. Guestrin, \u201cWhy Should I Trust You?\u201d: Explaining the Predictions of Any Classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.","DOI":"10.1145\/2939672.2939778"},{"key":"10.1016\/j.neucom.2023.126640_b11","series-title":"Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20","first-page":"2305","article-title":"DeepView: Visualizing classification boundaries of deep neural networks as scatter plots using discriminative dimensionality reduction","author":"Schulz","year":"2020"},{"issue":"2","key":"10.1016\/j.neucom.2023.126640_b12","article-title":"Information retrieval perspective to nonlinear dimensionality reduction for data visualization","volume":"11","author":"Venna","year":"2010","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"10.1016\/j.neucom.2023.126640_b13","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neucom.2023.126640_b14","first-page":"589","article-title":"Consistent feature selection for pattern recognition in polynomial time","volume":"8","author":"Nilsson","year":"2007","journal-title":"J. Mach. Learn. Res."},{"year":"1951","series-title":"Notes on the N-Person Game\u2013I: Characteristic-Point Solutions of the Four-Person Game","author":"Shapley","key":"10.1016\/j.neucom.2023.126640_b15"},{"year":"2022","series-title":"Incremental permutation feature importance (iPFI): Towards online explanations on data streams","author":"Fumagalli","key":"10.1016\/j.neucom.2023.126640_b16"},{"year":"2013","series-title":"Deep inside convolutional networks: Visualising image classification models and saliency maps","author":"Simonyan","key":"10.1016\/j.neucom.2023.126640_b17"},{"year":"2017","series-title":"Counterfactual explanations without opening the black box: Automated decisions and the GDPR","author":"Wachter","key":"10.1016\/j.neucom.2023.126640_b18"},{"year":"2019","series-title":"Interpretable counterfactual explanations guided by prototypes","author":"Looveren","key":"10.1016\/j.neucom.2023.126640_b19"},{"key":"10.1016\/j.neucom.2023.126640_b20","article-title":"Learning under concept drift: A review","author":"Lu","year":"2018","journal-title":"IEEE TKDE"},{"year":"2017","series-title":"Understanding concept drift","author":"Webb","key":"10.1016\/j.neucom.2023.126640_b21"},{"key":"10.1016\/j.neucom.2023.126640_b22","series-title":"30th USENIX Security Symposium","first-page":"2327","article-title":"CADE: Detecting and explaining concept drift samples for security applications","author":"Yang","year":"2021"},{"key":"10.1016\/j.neucom.2023.126640_b23","series-title":"2022 International Joint Conference on Neural Networks","first-page":"1","article-title":"Localization of concept drift: Identifying the drifting datapoints","author":"Hinder","year":"2022"},{"key":"10.1016\/j.neucom.2023.126640_b24","series-title":"ESANN","article-title":"Contrasting explanation of concept drift","author":"Hinder","year":"2022"},{"key":"10.1016\/j.neucom.2023.126640_b25","series-title":"ESANN","article-title":"Concept drift segmentation via Kolmogorov-trees","author":"Hinder","year":"2021"},{"key":"10.1016\/j.neucom.2023.126640_b26","unstructured":"F. Hinder, A. Artelt, B. Hammer, Towards Non-Parametric Drift Detection via Dynamic Adapting Window Independence Drift Detection (DAWIDD), in: ICML, 2020."},{"year":"2020","series-title":"Interpretable Machine Learning","author":"Molnar","key":"10.1016\/j.neucom.2023.126640_b27"},{"issue":"3","key":"10.1016\/j.neucom.2023.126640_b28","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1109\/TCDS.2020.3044366","article-title":"Explanation as a social practice: Toward a conceptual framework for the social design of AI systems","volume":"13","author":"Rohlfing","year":"2021","journal-title":"IEEE Trans. Cogn. Dev. Syst."},{"key":"10.1016\/j.neucom.2023.126640_b29","doi-asserted-by":"crossref","DOI":"10.1007\/s10618-018-0554-1","article-title":"Analyzing concept drift and shift from sample data","volume":"32","author":"Webb","year":"2018","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.neucom.2023.126640_b30","series-title":"IJCAI","article-title":"Regional concept drift detection and density synchronized drift adaptation","author":"Liu","year":"2017"},{"key":"10.1016\/j.neucom.2023.126640_b31","doi-asserted-by":"crossref","unstructured":"X. Wang, W. Chen, J. Xia, Z. Chen, D. Xu, X. Wu, M. Xu, T. Schreck, ConceptExplorer: Visual analysis of concept drifts in multi-source time-series data, in: 2020 IEEE Conference on Visual Analytics Science and Technology, VAST, 2020.","DOI":"10.1109\/VAST50239.2020.00006"},{"key":"10.1016\/j.neucom.2023.126640_b32","series-title":"Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","article-title":"Visualizing concept drift","author":"Pratt","year":"2003"},{"key":"10.1016\/j.neucom.2023.126640_b33","series-title":"Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence","first-page":"6276","article-title":"Counterfactuals in explainable artificial intelligence (XAI): Evidence from human reasoning","author":"Byrne","year":"2019"},{"issue":"2","key":"10.1016\/j.neucom.2023.126640_b34","doi-asserted-by":"crossref","DOI":"10.1109\/TNNLS.2016.2619909","article-title":"A pdf-free change detection test based on density difference estimation","volume":"29","author":"Bu","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2023.126640_b35","article-title":"An information-theoretic approach to detecting changes in MultiDimensional data streams","author":"Dasu","year":"2006","journal-title":"Interfaces"},{"key":"10.1016\/j.neucom.2023.126640_b36","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.artint.2015.09.009","article-title":"A concept drift-tolerant case-base editing technique","volume":"230","author":"Lu","year":"2016","journal-title":"Artificial Intelligence"},{"issue":"4","key":"10.1016\/j.neucom.2023.126640_b37","doi-asserted-by":"crossref","DOI":"10.1145\/2523813","article-title":"A survey on concept drift adaptation","volume":"46","author":"Gama","year":"2014","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.neucom.2023.126640_b38","series-title":"International Symposium on Intelligent Data Analysis","first-page":"157","article-title":"Suitability of different metric choices for concept drift detection","author":"Hinder","year":"2022"},{"issue":"1","key":"10.1016\/j.neucom.2023.126640_b39","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1145\/3359786","article-title":"Techniques for interpretable machine learning","volume":"63","author":"Du","year":"2019","journal-title":"Commun. ACM"},{"key":"10.1016\/j.neucom.2023.126640_b40","series-title":"Intelligent Data Engineering and Automated Learning","first-page":"28","article-title":"Meaningful data sampling for a faithful local explanation method","author":"Rasouli","year":"2019"},{"issue":"5","key":"10.1016\/j.neucom.2023.126640_b41","doi-asserted-by":"crossref","first-page":"95:1","DOI":"10.1145\/3527848","article-title":"A survey of algorithmic recourse: Contrastive explanations and consequential recommendations","volume":"55","author":"Karimi","year":"2023","journal-title":"ACM Comput. Surv."},{"year":"2006","series-title":"Early drift detection method","author":"Baena-Garc\u00eda","key":"10.1016\/j.neucom.2023.126640_b42"},{"key":"10.1016\/j.neucom.2023.126640_b43","doi-asserted-by":"crossref","unstructured":"A. Bifet, R. Gavalda, Learning from time-changing data with adaptive windowing, in: SIAM SDM, 2007.","DOI":"10.1137\/1.9781611972771.42"},{"key":"10.1016\/j.neucom.2023.126640_b44","doi-asserted-by":"crossref","unstructured":"G. Ditzler, R. Polikar, Hellinger distance based drift detection for nonstationary environments, in: IEEE CIDUE, 2011.","DOI":"10.1109\/CIDUE.2011.5948491"},{"key":"10.1016\/j.neucom.2023.126640_b45","series-title":"Brazilian Symposium on Artificial Intelligence","article-title":"Learning with drift detection","author":"Gama","year":"2004"},{"issue":"1\u20132","key":"10.1016\/j.neucom.2023.126640_b46","article-title":"Continuous inspection schemes","volume":"41","author":"PAGE","year":"1954","journal-title":"Biometrika"},{"issue":"2","key":"10.1016\/j.neucom.2023.126640_b47","doi-asserted-by":"crossref","DOI":"10.1214\/aoms\/1177731118","article-title":"Sequential tests of statistical hypotheses","volume":"16","author":"Wald","year":"1945","journal-title":"Ann. Math. Stat."},{"key":"10.1016\/j.neucom.2023.126640_b48","series-title":"2009 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.neucom.2023.126640_b49","series-title":"2021 IEEE Symposium Series on Computational Intelligence","first-page":"1","article-title":"Fast non-parametric conditional density estimation using moment trees","author":"Hinder","year":"2021"},{"issue":"2","key":"10.1016\/j.neucom.2023.126640_b50","doi-asserted-by":"crossref","first-page":"2800","DOI":"10.1214\/17-EJS1302","article-title":"Converting high-dimensional regression to high-dimensional conditional density estimation","volume":"11","author":"Izbicki","year":"2017","journal-title":"Electron. J. Stat."},{"year":"2023","series-title":"On the hardness and necessity of supervised concept drift detection","author":"Hinder","key":"10.1016\/j.neucom.2023.126640_b51"},{"key":"10.1016\/j.neucom.2023.126640_b52","first-page":"231:1","article-title":"Sklvq: Scikit learning vector quantization","volume":"22","author":"van Veen","year":"2021","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2023.126640_b53","doi-asserted-by":"crossref","first-page":"914","DOI":"10.1109\/69.250074","article-title":"Database mining: A performance perspective","volume":"5","author":"Agrawal","year":"1993","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"72","key":"10.1016\/j.neucom.2023.126640_b54","first-page":"1","article-title":"Scikit-multiflow: A multi-output streaming framework","volume":"19","author":"Montiel","year":"2018","journal-title":"J. Mach. Learn. Res."},{"year":"1999","series-title":"Splice-2 comparative evaluation: Electricity pricing","author":"Harries","key":"10.1016\/j.neucom.2023.126640_b55"},{"year":"1998","series-title":"Covertype data set","author":"Blackard","key":"10.1016\/j.neucom.2023.126640_b56"},{"issue":"10","key":"10.1016\/j.neucom.2023.126640_b57","doi-asserted-by":"crossref","DOI":"10.1109\/TNN.2011.2160459","article-title":"Incremental learning of concept drift in nonstationary environments","volume":"22","author":"Elwell","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"issue":"2","key":"10.1016\/j.neucom.2023.126640_b58","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1111\/j.2517-6161.1988.tb01721.x","article-title":"Local computations with probabilities on graphical structures and their application to expert systems","volume":"50","author":"Lauritzen","year":"1988","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"key":"10.1016\/j.neucom.2023.126640_b59","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v036.i11","article-title":"Feature selection with the Boruta package","volume":"36","author":"Kursa","year":"2010","journal-title":"Journal of statistical software"},{"key":"10.1016\/j.neucom.2023.126640_b60","series-title":"Artificial Neural Networks and Machine Learning - ICANN 2022 - 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6-9, 2022, Proceedings, Part II","first-page":"682","article-title":"Taking care of our drinking water: Dealing with sensor faults in water distribution networks","volume":"vol. 13530","author":"Vaquet","year":"2022"},{"issue":"9","key":"10.1016\/j.neucom.2023.126640_b61","doi-asserted-by":"crossref","first-page":"1874","DOI":"10.3390\/w11091874","article-title":"Estimating peak daily water demand under different climate change and vacation scenarios","volume":"11","author":"Vonk","year":"2019","journal-title":"Water"},{"issue":"12","key":"10.1016\/j.neucom.2023.126640_b62","article-title":"Battle of the leakage detection and isolation methods","volume":"148","author":"Vrachimis","year":"2022","journal-title":"J. Water Resourc. Plann. Manag."},{"year":"2018","series-title":"An overview of the water network tool for resilience (WNTR)","author":"Klise","key":"10.1016\/j.neucom.2023.126640_b63"},{"year":"2010","series-title":"MNIST handwritten digit database","author":"LeCun","key":"10.1016\/j.neucom.2023.126640_b64"},{"key":"10.1016\/j.neucom.2023.126640_b65","series-title":"International Conference on Learning Representations","article-title":"Large scale GAN training for high fidelity natural image synthesis","author":"Brock","year":"2019"},{"year":"2019","series-title":"CEML-counterfactuals for explaining machine learning models-a python toolbox","author":"Artelt","key":"10.1016\/j.neucom.2023.126640_b66"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223007634?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223007634?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T08:16:18Z","timestamp":1729844178000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231223007634"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10]]},"references-count":66,"alternative-id":["S0925231223007634"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126640","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2023,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Model-based explanations of concept drift","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126640","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"126640"}}