{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T08:36:16Z","timestamp":1721032576565},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,6,28]],"date-time":"2024-06-28T00:00:00Z","timestamp":1719532800000},"content-version":"am","delay-in-days":301,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.neucom.2023.126472","type":"journal-article","created":{"date-parts":[[2023,6,16]],"date-time":"2023-06-16T00:27:54Z","timestamp":1686875274000},"page":"126472","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["A mixed-categorical correlation kernel for Gaussian process"],"prefix":"10.1016","volume":"550","author":[{"given":"P.","family":"Saves","sequence":"first","affiliation":[]},{"given":"Y.","family":"Diouane","sequence":"additional","affiliation":[]},{"given":"N.","family":"Bartoli","sequence":"additional","affiliation":[]},{"given":"T.","family":"Lefebvre","sequence":"additional","affiliation":[]},{"given":"J.","family":"Morlier","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2023.126472_b0005","unstructured":"P. Saves, E. Nguyen Van, N. Bartoli, Y. Diouane, T. Lefebvre, C. David, S. Defoort, J. Morlier, Bayesian optimization for mixed variables using an adaptive dimension reduction process: applications to aircraft design, in: AIAA SciTech Forum 2022."},{"key":"10.1016\/j.neucom.2023.126472_b0010","unstructured":"J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat, R. Adams, Scalable bayesian optimization using deep neural networks, in: International conference on machine learning, 2015."},{"key":"10.1016\/j.neucom.2023.126472_b0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108139","article-title":"Multioutput gaussian processes with functional data: A study on coastal flood hazard assessment","volume":"218","author":"L\u00f3pez-Lopera","year":"2022","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.neucom.2023.126472_b0020","doi-asserted-by":"crossref","first-page":"5375","DOI":"10.1016\/j.aej.2021.04.022","article-title":"Application of gaussian process regression to forecast multi-step ahead spei drought index","volume":"60","author":"Ghasemi","year":"2021","journal-title":"Alexand. Eng. J."},{"key":"10.1016\/j.neucom.2023.126472_b0025","series-title":"7th International Conference on Information and Automation for Sustainability","first-page":"1","article-title":"Detection of moving targets in the visual pathways of turtles using computational models","author":"Perera","year":"2014"},{"key":"10.1016\/j.neucom.2023.126472_b0030","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s11081-015-9296-8","article-title":"A parallel evolution strategy for an earth imaging problem in geophysics","volume":"17","author":"Diouane","year":"2016","journal-title":"Optim. Eng."},{"key":"10.1016\/j.neucom.2023.126472_b0035","unstructured":"R.C. Rufato, Y. Diouane, J. Henry, R. Ahlfeld, J. Morlier, A mixed-categorical data-driven approach for prediction and optimization of hybrid discontinuous composites performance, AIAA AVIATION 2022 Forum."},{"key":"10.1016\/j.neucom.2023.126472_b0040","series-title":"Gaussian processes for machine learning","author":"Williams","year":"2006"},{"key":"10.1016\/j.neucom.2023.126472_b0045","first-page":"119","article-title":"A statistical approach to some basic mine valuation problems on the witwatersrand","volume":"52","author":"Krige","year":"1951","journal-title":"J. South Afr. Inst. Min. Metall."},{"key":"10.1016\/j.neucom.2023.126472_b0050","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1007\/s10898-018-0715-1","article-title":"Efficient global optimization of constrained mixed variable problems","volume":"73","author":"Pelamatti","year":"2019","journal-title":"J. Global Optim."},{"key":"10.1016\/j.neucom.2023.126472_b0055","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1198\/TECH.2011.10025","article-title":"A simple approach to emulation for computer models with qualitative and quantitative factors","volume":"53","author":"Zhou","year":"2011","journal-title":"Technometrics"},{"key":"10.1016\/j.neucom.2023.126472_b0060","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1080\/00401706.2016.1211554","article-title":"Additive gaussian process for computer models with qualitative and quantitative factors","volume":"59","author":"Deng","year":"2017","journal-title":"Technometrics"},{"key":"10.1016\/j.neucom.2023.126472_b0065","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1137\/18M1209386","article-title":"Group kernels for gaussian process metamodels with categorical inputs","volume":"8","author":"Roustant","year":"2020","journal-title":"SIAM J. Uncertainty Quantif."},{"key":"10.1016\/j.neucom.2023.126472_b0070","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.neucom.2019.11.004","article-title":"Dealing with categorical and integer-valued variables in bayesian optimization with gaussian processes","volume":"380","author":"Garrido-Merch\u00e1n","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2023.126472_b0075","unstructured":"M. Halstrup, Black-Box Optimization of Mixed Discrete-Continuous Optimization Problems, Ph.D. thesis, TU Dortmund, 2016."},{"key":"10.1016\/j.neucom.2023.126472_b0080","first-page":"1","article-title":"A comparison of mixed-variables bayesian optimization approaches","volume":"9","author":"Cuesta-Ramirez","year":"2021","journal-title":"Adv. Model. Simul. Eng. Sci."},{"key":"10.1016\/j.neucom.2023.126472_b0085","series-title":"International Conference on Learning and Intelligent Optimization","article-title":"Sequential model-based optimization for general algorithm configuration","author":"Hutter","year":"2011"},{"key":"10.1016\/j.neucom.2023.126472_b0090","series-title":"25th Annual Conference on Neural Information Processing Systems","article-title":"Algorithms for hyper-parameter optimization","author":"Bergstra","year":"2011"},{"key":"10.1016\/j.neucom.2023.126472_b0095","series-title":"Proceedings of the Genetic and Evolutionary Computation Conference Companion","article-title":"Black-box mixed-variable optimisation using a surrogate model that satisfies integer constraints","author":"Bliek","year":"2021"},{"key":"10.1016\/j.neucom.2023.126472_b0100","unstructured":"T. Papalexopoulos, C. Tjandraatmadja, R. Anderson, J.P. Vielma, D. Belanger, Constrained discrete black-box optimization using mixed-integer programming, 2021."},{"key":"10.1016\/j.neucom.2023.126472_b0105","doi-asserted-by":"crossref","first-page":"48","DOI":"10.32614\/RJ-2012-012","article-title":"The crs package: nonparametric regression splines for continuous and categorical predictors","volume":"4","author":"Nie","year":"2012","journal-title":"R J."},{"key":"10.1016\/j.neucom.2023.126472_b0110","doi-asserted-by":"crossref","first-page":"979","DOI":"10.1007\/s00158-013-1029-z","article-title":"Metamodel-assisted optimization based on multiple kernel regression for mixed variables","volume":"49","author":"Herrera","year":"2014","journal-title":"Struct. Multidisc. Optimiz."},{"key":"10.1016\/j.neucom.2023.126472_b0115","doi-asserted-by":"crossref","unstructured":"A. Moraglio, A. Kattan, Geometric generalisation of surrogate model based optimisation to combinatorial spaces, in: Evolutionary Computation in Combinatorial Optimization, 2011.","DOI":"10.1007\/978-3-642-20364-0_13"},{"key":"10.1016\/j.neucom.2023.126472_b0120","first-page":"310","article-title":"Global optimization for mixed categorical-continuous variables based on gaussian process models with a randomized categorical space exploration step","volume":"58","author":"Zuniga","year":"2020","journal-title":"INFOR: Inform. Syst. Operat. Res."},{"key":"10.1016\/j.neucom.2023.126472_b0125","article-title":"Bayesian optimization for categorical and category-specific continuous inputs","author":"Nguyen","year":"2020","journal-title":"AAAI-20 Technical Tracks"},{"key":"10.1016\/j.neucom.2023.126472_b0130","doi-asserted-by":"crossref","unstructured":"S. Roy, W.A. Crossley, B.K. Stanford, K.T. Moore, J.S. Gray, A mixed integer efficient global optimization algorithm with multiple infill strategy \u2013 applied to a wing topology optimization problem, in: AIAA SciTech 2019 Forum.","DOI":"10.2514\/6.2019-2356"},{"key":"10.1016\/j.neucom.2023.126472_b0135","first-page":"477","article-title":"Filter pattern search algorithms for mixed variable constrained optimization problems","volume":"3","author":"Abramson","year":"2007","journal-title":"Pacific J. Optimiz."},{"key":"10.1016\/j.neucom.2023.126472_b0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.advengsoft.2019.03.005","article-title":"A python surrogate modeling framework with derivatives","volume":"135","author":"Bouhlel","year":"2019","journal-title":"Adv. Eng. Softw."},{"key":"10.1016\/j.neucom.2023.126472_b0145","doi-asserted-by":"crossref","first-page":"783","DOI":"10.2514\/1.B38696","article-title":"Coaxial-injector surrogate modeling based on reynolds-averaged navier-stokes simulations using deep learning","volume":"38","author":"Kr\u00fcgener","year":"2022","journal-title":"J. Propul. Power"},{"key":"10.1016\/j.neucom.2023.126472_b0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.ast.2021.107309","article-title":"Low-reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes","volume":"121","author":"Li","year":"2022","journal-title":"Aerosp. Sci. Technol."},{"key":"10.1016\/j.neucom.2023.126472_b0155","doi-asserted-by":"crossref","first-page":"4243","DOI":"10.2514\/1.J059254","article-title":"Efficient aerodynamic shape optimization with deep-learning-based geometric filtering","volume":"58","author":"Li","year":"2020","journal-title":"AIAA J."},{"key":"10.1016\/j.neucom.2023.126472_b0160","article-title":"Large eddy simulations and deep learning for the investigation of recess variation of a shear-coaxial injector","author":"Zapata Usandivaras","year":"2022","journal-title":"Space Propulsion Conference 2022"},{"key":"10.1016\/j.neucom.2023.126472_b0165","first-page":"1","article-title":"Deep gaussian process emulation using stochastic imputation","author":"Ming","year":"2022","journal-title":"Technometrics"},{"key":"10.1016\/j.neucom.2023.126472_b0170","doi-asserted-by":"crossref","unstructured":"M.F. Izzaturrahman, P.S. Palar, L. Zuhal, K. Shimoyama, Modeling non-stationarity with deep gaussian processes: Applications in aerospace engineering, AIAA SciTech 2022 Forum.","DOI":"10.2514\/6.2022-1096"},{"key":"10.1016\/j.neucom.2023.126472_b0175","series-title":"Engineering Design via Surrogate Modelling: A Practical Guide","author":"Forrester","year":"2008"},{"key":"10.1016\/j.neucom.2023.126472_b0180","unstructured":"D. Duvenaud, Automatic model construction with Gaussian processes (Ph.D. thesis), University of Cambridge, 2014."},{"key":"10.1016\/j.neucom.2023.126472_b0185","series-title":"Mathematical statistics: an introduction to likelihood based inference","author":"Rossi","year":"2018"},{"key":"10.1016\/j.neucom.2023.126472_b0190","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.cie.2015.05.012","article-title":"Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systems","volume":"87","author":"de L\u00e1zaro","year":"2015","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.neucom.2023.126472_b0195","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.isatra.2021.08.040","article-title":"Criteria for optimizing kernel methods in fault monitoring process: A survey","volume":"127","author":"de L\u00e1zaro","year":"2022","journal-title":"ISA Trans."},{"key":"10.1016\/j.neucom.2023.126472_b0200","series-title":"Gaussian Processes","first-page":"575","author":"Lee","year":"2011"},{"key":"10.1016\/j.neucom.2023.126472_b0205","series-title":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","article-title":"Google vizier: A service for black-box optimization","author":"Golovin","year":"2017"},{"key":"10.1016\/j.neucom.2023.126472_b0210","doi-asserted-by":"crossref","first-page":"17","DOI":"10.21314\/JOR.2000.023","article-title":"The most general methodology to create a valid correlation matrix for risk management and option pricing purposes","volume":"2","author":"Rebonato","year":"2001","journal-title":"J. Risk"},{"key":"10.1016\/j.neucom.2023.126472_b0215","first-page":"55","article-title":"Parameterizing correlations: a geometric interpretation","volume":"18","author":"Rapisarda","year":"2007","journal-title":"IMA J. Manage. Math."},{"key":"10.1016\/j.neucom.2023.126472_b0220","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1198\/004017008000000262","article-title":"Gaussian process models for computer experiments with qualitative and quantitative factors","volume":"50","author":"Qian","year":"2008","journal-title":"Technometrics"},{"key":"10.1016\/j.neucom.2023.126472_b0225","series-title":"Sur quelques applications de l\u2019indice de Kronecker","author":"Hadamard","year":"1910"},{"key":"10.1016\/j.neucom.2023.126472_b0230","series-title":"Nonnegative Matrices and Applications","author":"Bapat","year":"1997"},{"key":"10.1016\/j.neucom.2023.126472_b0235","doi-asserted-by":"crossref","first-page":"522","DOI":"10.1090\/S0002-9947-1938-1501980-0","article-title":"Metric spaces and positive definite functions","volume":"44","author":"Schoenberg","year":"1938","journal-title":"Trans. Am. Math. Soc."},{"key":"10.1016\/j.neucom.2023.126472_b0240","series-title":"Matrix analysis","author":"Horn","year":"2012"},{"key":"10.1016\/j.neucom.2023.126472_b0245","series-title":"Representations of Lie groups and special functions","author":"Vilenkin","year":"1995"},{"key":"10.1016\/j.neucom.2023.126472_b0250","first-page":"51","article-title":"A direct search optimization method that models the objective and constraint functions by linear interpolation","author":"Powell","year":"1994","journal-title":"Springer"},{"key":"10.1016\/j.neucom.2023.126472_b0255","first-page":"545","article-title":"An efficient algorithm for constructing optimal design of computer experiments","volume":"2","author":"Jin","year":"2005","journal-title":"J. Stat. Plann. Inference"},{"key":"10.1016\/j.neucom.2023.126472_b0260","doi-asserted-by":"crossref","first-page":"1482","DOI":"10.1002\/qre.2973","article-title":"Model selection based on validation criteria for gaussian process regression: An application with highlights on the predictive variance","volume":"38","author":"Demay","year":"2022","journal-title":"Q. Reliab. Eng. Int."},{"key":"10.1016\/j.neucom.2023.126472_b0265","doi-asserted-by":"crossref","DOI":"10.1115\/1.4029219","article-title":"Trust region based mode pursuing sampling method for global optimization of high dimensional design problems","volume":"137","author":"Cheng","year":"2015","journal-title":"J. Mech. Des."},{"key":"10.1016\/j.neucom.2023.126472_b0270","doi-asserted-by":"crossref","DOI":"10.1016\/j.cma.2021.114128","article-title":"Latent map gaussian processes for mixed variable metamodeling","volume":"387","author":"Oune","year":"2021","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"10.1016\/j.neucom.2023.126472_b0275","doi-asserted-by":"crossref","unstructured":"P. Schmollgruber, C. D\u00f6ll, J. Hermetz, R. Liaboeuf, M. Ridel, I. Cafarelli, O. Atinault, C. Fran\u00e7ois, B. Paluch, Multidisciplinary exploration of DRAGON: an ONERA hybrid electric distributed propulsion concept, AIAA SciTech 2019 Forum.","DOI":"10.2514\/6.2019-1585"},{"key":"10.1016\/j.neucom.2023.126472_b0280","doi-asserted-by":"crossref","DOI":"10.1088\/1757-899X\/1024\/1\/012062","article-title":"From FAST to FAST-OAD: An open source framework for rapid overall aircraft design","volume":"1024","author":"David","year":"2021","journal-title":"IOP Conference Series: Materials Science and Engineering"},{"key":"10.1016\/j.neucom.2023.126472_b0285","doi-asserted-by":"crossref","first-page":"2038","DOI":"10.1080\/0305215X.2017.1419344","article-title":"Efficient global optimization for high-dimensional constrained problems by using the kriging models combined with the partial least squares method","volume":"50","author":"Bouhlel","year":"2018","journal-title":"Eng. Optimiz."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005957?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005957?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T21:40:03Z","timestamp":1717278003000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231223005957"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":57,"alternative-id":["S0925231223005957"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126472","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A mixed-categorical correlation kernel for Gaussian process","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126472","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"126472"}}