{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T04:22:45Z","timestamp":1729570965473,"version":"3.28.0"},"reference-count":114,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,6]],"date-time":"2023-06-06T00:00:00Z","timestamp":1686009600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.neucom.2023.126435","type":"journal-article","created":{"date-parts":[[2023,6,10]],"date-time":"2023-06-10T16:55:43Z","timestamp":1686416143000},"page":"126435","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Deep learning ensembles for accurate fog-related low-visibility events forecasting"],"prefix":"10.1016","volume":"549","author":[{"given":"C.","family":"Pel\u00e1ez-Rodr\u00edguez","sequence":"first","affiliation":[]},{"given":"J.","family":"P\u00e9rez-Aracil","sequence":"additional","affiliation":[]},{"given":"A.","family":"de Lopez-Diz","sequence":"additional","affiliation":[]},{"given":"C.","family":"Casanova-Mateo","sequence":"additional","affiliation":[]},{"given":"D.","family":"Fister","sequence":"additional","affiliation":[]},{"given":"S.","family":"Jim\u00e9nez-Fern\u00e1ndez","sequence":"additional","affiliation":[]},{"given":"S.","family":"Salcedo-Sanz","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2023.126435_b0005","first-page":"3357","article-title":"Development of hazardous road fog index and its application","volume":"6","author":"Cho","year":"2005","journal-title":"J. Eastern Asia Soc. Transp. Stud."},{"issue":"6","key":"10.1016\/j.neucom.2023.126435_b0010","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1109\/TPAMI.2003.1201821","article-title":"Contrast restoration of weather degraded images","volume":"25","author":"Narasimhan","year":"2003","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2023.126435_b0015","first-page":"1","article-title":"Visibility in bad weather from a single image","volume":"2008","author":"Tan","year":"2008","journal-title":"2008 IEEE conference on computer vision and pattern recognition, IEEE"},{"issue":"2","key":"10.1016\/j.neucom.2023.126435_b0020","doi-asserted-by":"crossref","first-page":"04017077","DOI":"10.1061\/JTEPBS.0000094","article-title":"Analysis of the impact of fog-related reduced visibility on traffic parameters","volume":"144","author":"Peng","year":"2018","journal-title":"J. Transp. Eng. Part A: Syst."},{"issue":"695","key":"10.1016\/j.neucom.2023.126435_b0025","doi-asserted-by":"crossref","first-page":"1048","DOI":"10.1002\/qj.2708","article-title":"Forecasting radiation fog at climatologically contrasting sites: evaluation of statistical methods and WRF","volume":"142","author":"Rom\u00e1n-Casc\u00f3n","year":"2016","journal-title":"Q. J. R. Meteorol. Soc."},{"issue":"2","key":"10.1016\/j.neucom.2023.126435_b0030","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1007\/s10546-014-9973-8","article-title":"The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models","volume":"154","author":"Steeneveld","year":"2015","journal-title":"Bound.-Layer Meteorol."},{"key":"10.1016\/j.neucom.2023.126435_b0035","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.atmosres.2019.03.012","article-title":"Forecasting of poor visibility episodes in the vicinity of Tenerife Norte airport","volume":"223","author":"Fern\u00e1ndez-Gonz\u00e1lez","year":"2019","journal-title":"Atmos. Res."},{"issue":"6","key":"10.1016\/j.neucom.2023.126435_b0040","doi-asserted-by":"crossref","first-page":"1121","DOI":"10.1007\/s00024-007-0211-x","article-title":"Fog research: A review of past achievements and future perspectives","volume":"164","author":"Gultepe","year":"2007","journal-title":"Pure Appl. Geophys."},{"issue":"6","key":"10.1016\/j.neucom.2023.126435_b0045","doi-asserted-by":"crossref","first-page":"679","DOI":"10.3390\/atmos12060679","article-title":"Statistical analysis and machine learning prediction of fog-caused low-visibility events at A-8 motor-road in Spain","volume":"12","author":"Cornejo-Bueno","year":"2021","journal-title":"Atmosphere"},{"key":"10.1016\/j.neucom.2023.126435_b0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.atmosres.2022.106157","article-title":"Machine learning regression and classification methods for fog events prediction","volume":"272","author":"Castillo-Bot\u00f3n","year":"2022","journal-title":"Atmos. Res."},{"issue":"4","key":"10.1016\/j.neucom.2023.126435_b0055","first-page":"1","article-title":"Machine-learning regression applied to diagnose horizontal visibility from mesoscale NWP model forecasts","volume":"2","author":"Bari","year":"2020","journal-title":"Appl. Sci."},{"issue":"2","key":"10.1016\/j.neucom.2023.126435_b0060","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1007\/s10546-017-0276-8","article-title":"Efficient prediction of low-visibility events at airports using machine-learning regression","volume":"165","author":"Cornejo-Bueno","year":"2017","journal-title":"Boundary-layer Meteorol."},{"key":"10.1016\/j.neucom.2023.126435_b0065","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.asoc.2018.05.035","article-title":"Efficient fog prediction with multi-objective evolutionary neural networks","volume":"70","author":"Dur\u00e1n-Rosal","year":"2018","journal-title":"Appl. Soft Comput."},{"issue":"2","key":"10.1016\/j.neucom.2023.126435_b0070","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1175\/WAF980.1","article-title":"Application of artificial neural network forecasts to predict fog at Canberra International airport","volume":"22","author":"Fabbian","year":"2007","journal-title":"Weather Forecasting"},{"issue":"10","key":"10.1016\/j.neucom.2023.126435_b0075","doi-asserted-by":"crossref","first-page":"1684","DOI":"10.3390\/atmos13101684","article-title":"Machine learning-based fog nowcasting for aviation with the aid of camera observations","volume":"13","author":"Bartok","year":"2022","journal-title":"Atmosphere"},{"issue":"5","key":"10.1016\/j.neucom.2023.126435_b0080","doi-asserted-by":"crossref","first-page":"1107","DOI":"10.1007\/s00024-011-0351-x","article-title":"A fuzzy logic fog forecasting model for Perth airport","volume":"169","author":"Miao","year":"2012","journal-title":"Pure Appl. Geophys."},{"key":"10.1016\/j.neucom.2023.126435_b0085","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.atmosres.2018.07.017","article-title":"Prediction of low-visibility events due to fog using ordinal classification","volume":"214","author":"Guijo-Rubio","year":"2018","journal-title":"Atmos. Res."},{"issue":"7","key":"10.1016\/j.neucom.2023.126435_b0090","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.3390\/atmos13071125","article-title":"Visibility prediction based on machine learning algorithms","volume":"13","author":"Zhang","year":"2022","journal-title":"Atmosphere"},{"key":"10.1016\/j.neucom.2023.126435_b0095","first-page":"1","article-title":"Application of machine learning algorithms for visibility classification","volume":"2019","author":"Ortega","year":"2019","journal-title":"2019 IEEE International Systems Conference (SysCon), IEEE"},{"issue":"6","key":"10.1016\/j.neucom.2023.126435_b0100","doi-asserted-by":"crossref","first-page":"2631","DOI":"10.1007\/s00024-018-1914-x","article-title":"Forecasting low-visibility procedure states with tree-based statistical methods","volume":"176","author":"Dietz","year":"2019","journal-title":"Pure Appl. Geophys."},{"issue":"12","key":"10.1016\/j.neucom.2023.126435_b0105","doi-asserted-by":"crossref","first-page":"2263","DOI":"10.1175\/WAF-D-22-0053.1","article-title":"Short-term visibility prediction using tree-based machine learning algorithms and numerical weather prediction data","volume":"37","author":"Kim","year":"2022","journal-title":"Weather Forecasting"},{"key":"10.1016\/j.neucom.2023.126435_b0110","article-title":"Estimation of the visibility in seoul, south korea, based on particulate matter and weather data, using machine-learning algorithm","volume":"22","author":"Kim","year":"2022","journal-title":"Aerosol Air Q. Res."},{"key":"10.1016\/j.neucom.2023.126435_b0115","first-page":"99","article-title":"Research on the usability of different machine learning methods in visibility forecasting","volume":"37","author":"Wen","year":"2023","journal-title":"Atm\u00f3sfera"},{"key":"10.1016\/j.neucom.2023.126435_b0120","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.patrec.2014.01.008","article-title":"A review of unsupervised feature learning and deep learning for time-series modeling","volume":"42","author":"L\u00e4ngkvist","year":"2014","journal-title":"Pattern Recogn. Lett."},{"issue":"2194","key":"10.1016\/j.neucom.2023.126435_b0125","doi-asserted-by":"crossref","first-page":"20200209","DOI":"10.1098\/rsta.2020.0209","article-title":"Time-series forecasting with deep learning: a survey","volume":"379","author":"Lim","year":"2021","journal-title":"Philos. Trans. R. Soc. A"},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0130","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1089\/big.2020.0159","article-title":"Deep learning for time series forecasting: a survey","volume":"9","author":"Torres","year":"2021","journal-title":"Big Data"},{"issue":"6","key":"10.1016\/j.neucom.2023.126435_b0135","doi-asserted-by":"crossref","first-page":"7833","DOI":"10.1109\/JSEN.2019.2923982","article-title":"A review of deep learning models for time series prediction","volume":"21","author":"Han","year":"2019","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.neucom.2023.126435_b0140","doi-asserted-by":"crossref","first-page":"83105","DOI":"10.1109\/ACCESS.2021.3085085","article-title":"Evaluation of deep learning models for multi-step ahead time series prediction","volume":"9","author":"Chandra","year":"2021","journal-title":"IEEE Access"},{"issue":"21","key":"10.1016\/j.neucom.2023.126435_b0145","doi-asserted-by":"crossref","first-page":"10335","DOI":"10.3390\/app112110335","article-title":"Wind power forecasting with deep learning networks: Time-series forecasting","volume":"11","author":"Lin","year":"2021","journal-title":"Appl. Sci."},{"key":"10.1016\/j.neucom.2023.126435_b0150","unstructured":"Y. Liu, E. Racah, J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel, M. Wehner, W. Collins, et al., Application of deep convolutional neural networks for detecting extreme weather in climate datasets, arXiv preprint arXiv:1605.01156 (2016)."},{"key":"10.1016\/j.neucom.2023.126435_b0155","article-title":"Temperature forecasting via convolutional recurrent neural networks based on time-series data","volume":"2020","author":"Zhang","year":"2020","journal-title":"Complexity"},{"key":"10.1016\/j.neucom.2023.126435_b0160","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.renene.2015.06.034","article-title":"Transfer learning for short-term wind speed prediction with deep neural networks","volume":"85","author":"Hu","year":"2016","journal-title":"Renewable Energy"},{"issue":"6","key":"10.1016\/j.neucom.2023.126435_b0165","doi-asserted-by":"crossref","first-page":"2770","DOI":"10.1109\/TII.2017.2730846","article-title":"Rough deep neural architecture for short-term wind speed forecasting","volume":"13","author":"Khodayar","year":"2017","journal-title":"IEEE Trans. Industr. Inf."},{"key":"10.1016\/j.neucom.2023.126435_b0170","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.apenergy.2016.08.108","article-title":"Deep belief network based deterministic and probabilistic wind speed forecasting approach","volume":"182","author":"Wang","year":"2016","journal-title":"Appl. Energy"},{"key":"10.1016\/j.neucom.2023.126435_b0175","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.neucom.2019.12.129","article-title":"Application of LSTM for short-term fog forecasting based on meteorological elements","volume":"408","author":"Miao","year":"2020","journal-title":"Neurocomputing"},{"issue":"03","key":"10.1016\/j.neucom.2023.126435_b0180","doi-asserted-by":"crossref","first-page":"314","DOI":"10.4236\/acs.2017.73023","article-title":"The application of deep learning in airport visibility forecast","volume":"7","author":"Zhu","year":"2017","journal-title":"Atmospheric Climate Sci."},{"key":"10.1016\/j.neucom.2023.126435_b0185","article-title":"Deep learning models for visibility forecasting using climatological data","author":"Ortega","year":"2022","journal-title":"Int. J. Forecast."},{"issue":"6","key":"10.1016\/j.neucom.2023.126435_b0190","doi-asserted-by":"crossref","first-page":"1343","DOI":"10.3390\/s19061343","article-title":"Visnet: Deep convolutional neural networks for forecasting atmospheric visibility","volume":"19","author":"Palvanov","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.neucom.2023.126435_b0195","article-title":"Fognet: A multiscale 3d cnn with double-branch dense block and attention mechanism for fog prediction","volume":"5","author":"Kamangir","year":"2021","journal-title":"Machine Learn. Appl."},{"key":"10.1016\/j.neucom.2023.126435_b0200","doi-asserted-by":"crossref","DOI":"10.1016\/j.envsoft.2022.105424","article-title":"Importance of 3d convolution and physics on a deep learning coastal fog model","volume":"154","author":"Kamangir","year":"2022","journal-title":"Environ. Modell. Software"},{"key":"10.1016\/j.neucom.2023.126435_b0205","series-title":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI)","first-page":"209","article-title":"Forecasting atmospheric visibility using auto regressive recurrent neural network","author":"Jonnalagadda","year":"2020"},{"issue":"3","key":"10.1016\/j.neucom.2023.126435_b0210","doi-asserted-by":"crossref","first-page":"553","DOI":"10.3390\/rs15030553","article-title":"A modified rnn-based deep learning method for prediction of atmospheric visibility","volume":"15","author":"Zang","year":"2023","journal-title":"Remote Sensing"},{"issue":"10","key":"10.1016\/j.neucom.2023.126435_b0215","doi-asserted-by":"crossref","first-page":"2657","DOI":"10.1364\/AO.449148","article-title":"Atmospheric visibility prediction by using the dbn deep learning model and principal component analysis","volume":"61","author":"Wang","year":"2022","journal-title":"Appl. Opt."},{"issue":"23","key":"10.1016\/j.neucom.2023.126435_b0220","doi-asserted-by":"crossref","first-page":"16163","DOI":"10.3390\/su142316163","article-title":"Spatio-temporal network for sea fog forecasting","volume":"14","author":"Park","year":"2022","journal-title":"Sustainability"},{"key":"10.1016\/j.neucom.2023.126435_b0225","doi-asserted-by":"crossref","DOI":"10.1016\/j.atmosenv.2022.119085","article-title":"Visibility classification and influencing-factors analysis of airport: A deep learning approach","volume":"278","author":"Liu","year":"2022","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.neucom.2023.126435_b0230","unstructured":"M.A. Ganaie, M. Hu, et al., Ensemble deep learning: A review, arXiv preprint arXiv:2104.02395 (2021)."},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0235","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2379776.2379786","article-title":"Ensemble approaches for regression: A survey","volume":"45","author":"Mendes-Moreira","year":"2012","journal-title":"ACM Comput. Surv."},{"issue":"2","key":"10.1016\/j.neucom.2023.126435_b0240","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s11704-019-8208-z","article-title":"A survey on ensemble learning","volume":"14","author":"Dong","year":"2020","journal-title":"Front. Comput. Sci."},{"issue":"5","key":"10.1016\/j.neucom.2023.126435_b0245","doi-asserted-by":"crossref","first-page":"1657","DOI":"10.1109\/TCYB.2018.2809562","article-title":"Adaptive bi-weighting toward automatic initialization and model selection for HMM-based hybrid meta-clustering ensembles","volume":"49","author":"Yang","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2023.126435_b0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.jhydrol.2022.127762","article-title":"Short-term runoff prediction using deep learning multi-dimensional ensemble method","volume":"609","author":"Liu","year":"2022","journal-title":"J. Hydrol."},{"key":"10.1016\/j.neucom.2023.126435_b0255","doi-asserted-by":"crossref","first-page":"994","DOI":"10.1016\/j.ins.2022.09.002","article-title":"Effective machine learning model combination based on selective ensemble strategy for time series forecasting","volume":"612","author":"Lv","year":"2022","journal-title":"Inf. Sci."},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0260","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1007\/s41324-021-00408-3","article-title":"Cobid-net: a tailored deep learning ensemble model for time series forecasting of covid-19","volume":"30","author":"Shastri","year":"2022","journal-title":"Spatial Inform. Res."},{"key":"10.1016\/j.neucom.2023.126435_b0265","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.rser.2015.04.081","article-title":"Ensemble methods for wind and solar power forecasting-a state-of-the-art review","volume":"50","author":"Ren","year":"2015","journal-title":"Renew. Sustain. Energy Rev."},{"key":"10.1016\/j.neucom.2023.126435_b0270","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.apenergy.2016.11.111","article-title":"Deep learning based ensemble approach for probabilistic wind power forecasting","volume":"188","author":"Wang","year":"2017","journal-title":"Appl. Energy"},{"key":"10.1016\/j.neucom.2023.126435_b0275","doi-asserted-by":"crossref","DOI":"10.1016\/j.enconman.2020.112524","article-title":"A novel deep learning ensemble model with data denoising for short-term wind speed forecasting","volume":"207","author":"Peng","year":"2020","journal-title":"Energy Convers. Manage."},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0280","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1002\/dir.20028","article-title":"Response models based on bagging neural networks","volume":"19","author":"Ha","year":"2005","journal-title":"J. Interact. Market."},{"key":"10.1016\/j.neucom.2023.126435_b0285","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.epsr.2015.03.027","article-title":"Improved short-term load forecasting using bagged neural networks","volume":"125","author":"Khwaja","year":"2015","journal-title":"Electric Power Syst. Res."},{"issue":"4","key":"10.1016\/j.neucom.2023.126435_b0290","doi-asserted-by":"crossref","first-page":"726","DOI":"10.1109\/72.935086","article-title":"Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging","volume":"12","author":"Gen\u00e7ay","year":"2001","journal-title":"IEEE Trans. Neural Networks"},{"key":"10.1016\/j.neucom.2023.126435_b0295","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1016\/j.enconman.2018.03.098","article-title":"Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization","volume":"165","author":"Chen","year":"2018","journal-title":"Energy Convers. Manage."},{"key":"10.1016\/j.neucom.2023.126435_b0300","first-page":"1","article-title":"Ensemble deep learning for regression and time series forecasting","volume":"2014","author":"Qiu","year":"2014","journal-title":"IEEE symposium on computational intelligence in ensemble learning (CIEL), IEEE"},{"key":"10.1016\/j.neucom.2023.126435_b0305","doi-asserted-by":"crossref","first-page":"830","DOI":"10.1016\/j.knosys.2018.10.009","article-title":"Multi-step forecasting for big data time series based on ensemble learning","volume":"163","author":"Galicia","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.neucom.2023.126435_b0310","doi-asserted-by":"crossref","DOI":"10.1002\/asl.1151","article-title":"A deep learning ensemble approach for predicting tropical cyclone rapid intensification","author":"Chen","year":"2023","journal-title":"Atmosph. Sci. Lett."},{"key":"10.1016\/j.neucom.2023.126435_b0315","doi-asserted-by":"crossref","DOI":"10.1016\/j.epsr.2021.107584","article-title":"Time series forecasting using ensemble learning methods for emergency prevention in hydroelectric power plants with dam","volume":"202","author":"Stefenon","year":"2022","journal-title":"Electric Power Syst. Res."},{"issue":"5","key":"10.1016\/j.neucom.2023.126435_b0320","doi-asserted-by":"crossref","first-page":"1513","DOI":"10.1175\/JHM-D-16-0186.1","article-title":"Orographic land\u2013atmosphere interactions and the diurnal cycle of low-level clouds and fog","volume":"18","author":"Wilson","year":"2017","journal-title":"J. Hydrometeorol."},{"year":"2015","series-title":"An algebra-based survey of atmospheric science","author":"Stull","key":"10.1016\/j.neucom.2023.126435_b0325"},{"issue":"2","key":"10.1016\/j.neucom.2023.126435_b0330","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0335","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/BF00117832","article-title":"Stacked regressions","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"key":"10.1016\/j.neucom.2023.126435_b0340","doi-asserted-by":"crossref","unstructured":"E.C. Polley, M.J. Van Der Laan, Super learner in prediction (2010).","DOI":"10.1007\/978-1-4419-9782-1_3"},{"year":"2003","series-title":"The analysis of time series: an introduction","author":"Chatfield","key":"10.1016\/j.neucom.2023.126435_b0345"},{"key":"10.1016\/j.neucom.2023.126435_b0350","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105596","article-title":"A review of deep learning with special emphasis on architectures, applications and recent trends","volume":"194","author":"Sengupta","year":"2020","journal-title":"Knowl.-Based Syst."},{"year":"1999","series-title":"Recurrent neural networks: design and applications","author":"Medsker","key":"10.1016\/j.neucom.2023.126435_b0355"},{"key":"10.1016\/j.neucom.2023.126435_b0360","unstructured":"I. Sutskever, J. Martens, G.E. Hinton, Generating text with recurrent neural networks (2011)."},{"key":"10.1016\/j.neucom.2023.126435_b0365","doi-asserted-by":"crossref","first-page":"6645","DOI":"10.1109\/ICASSP.2013.6638947","article-title":"Speech recognition with deep recurrent neural networks","volume":"2013","author":"Graves","year":"2013","journal-title":"2013 IEEE international conference on acoustics, speech and signal processing, IEEE"},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0370","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.ejor.2012.02.042","article-title":"Forecasting wind speed with recurrent neural networks","volume":"221","author":"Cao","year":"2012","journal-title":"Eur. J. Oper. Res."},{"issue":"8","key":"10.1016\/j.neucom.2023.126435_b0375","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"issue":"4","key":"10.1016\/j.neucom.2023.126435_b0380","doi-asserted-by":"crossref","first-page":"694","DOI":"10.1109\/TASLP.2016.2520371","article-title":"Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval","volume":"24","author":"Palangi","year":"2016","journal-title":"IEEE\/ACM Trans. Audio, Speech, Language Process."},{"key":"10.1016\/j.neucom.2023.126435_b0385","doi-asserted-by":"crossref","unstructured":"J. Cheng, L. Dong, M. Lapata, Long short-term memory-networks for machine reading, arXiv preprint arXiv:1601.06733 (2016).","DOI":"10.18653\/v1\/D16-1053"},{"issue":"10","key":"10.1016\/j.neucom.2023.126435_b0390","doi-asserted-by":"crossref","first-page":"7177","DOI":"10.1007\/s10489-021-02249-x","article-title":"Two robust long short-term memory frameworks for trading stocks","volume":"51","author":"Fister","year":"2021","journal-title":"Appl. Intell."},{"issue":"25","key":"10.1016\/j.neucom.2023.126435_b0395","first-page":"e1","article-title":"Comparative analysis of wind speed forecasting using LSTM and SVM","volume":"7","author":"Gangwar","year":"2020","journal-title":"EAI Endorsed Transactions on Scalable Information Systems"},{"key":"10.1016\/j.neucom.2023.126435_b0400","unstructured":"J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, arXiv preprint arXiv:1412.3555 (2014)."},{"key":"10.1016\/j.neucom.2023.126435_b0405","series-title":"Competition and Cooperation in Neural Nets","first-page":"267","article-title":"Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition","author":"Fukushima","year":"1982"},{"issue":"6","key":"10.1016\/j.neucom.2023.126435_b0410","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1145\/3065386","article-title":"Imagenet classification with deep convolutional neural networks","volume":"60","author":"Krizhevsky","year":"2017","journal-title":"Commun. ACM"},{"issue":"4","key":"10.1016\/j.neucom.2023.126435_b0415","doi-asserted-by":"crossref","first-page":"917","DOI":"10.1007\/s10618-019-00619-1","article-title":"Deep learning for time series classification: a review","volume":"33","author":"Ismail Fawaz","year":"2019","journal-title":"Data Min. Knowl. Disc."},{"key":"10.1016\/j.neucom.2023.126435_b0420","doi-asserted-by":"crossref","unstructured":"A. Rosato, R. Araneo, A. Andreotti, F. Succetti, M. Panella, 2-D convolutional deep neural network for the multivariate prediction of photovoltaic time series, Energies 14 (9) (2021) 2392.","DOI":"10.3390\/en14092392"},{"key":"10.1016\/j.neucom.2023.126435_b0425","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1109\/SAMI48414.2020.9108717","article-title":"A review of activation function for artificial neural network","volume":"2020","author":"Rasamoelina","year":"2020","journal-title":"2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), IEEE"},{"key":"10.1016\/j.neucom.2023.126435_b0430","unstructured":"D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014)."},{"issue":"8","key":"10.1016\/j.neucom.2023.126435_b0435","first-page":"2","article-title":"Neural networks for machine learning lecture 6a overview of mini-batch gradient descent","volume":"14","author":"Hinton","year":"2012","journal-title":"Cited on"},{"key":"10.1016\/j.neucom.2023.126435_b0440","unstructured":"M.D. Zeiler, Adadelta: an adaptive learning rate method, arXiv preprint arXiv:1212.5701 (2012)."},{"issue":"5","key":"10.1016\/j.neucom.2023.126435_b0445","first-page":"566","article-title":"Adagrad\u2013an optimizer for stochastic gradient descent","volume":"6","author":"Lydia","year":"2019","journal-title":"Int. J. Inf. Comput. Sci."},{"key":"10.1016\/j.neucom.2023.126435_b0450","unstructured":"X. Zeng, Z. Zhang, D. Wang, Adamax online training for speech recognition, 2016 (2016)."},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0455","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1049\/rpg2.12275","article-title":"Followed the regularized leader (FTRL) prediction model based photovoltaic array reconfiguration for mitigation of mismatch losses in partial shading condition","volume":"16","author":"Gao","year":"2022","journal-title":"IET Renew. Power Gener."},{"key":"10.1016\/j.neucom.2023.126435_b0460","unstructured":"A. Tato, R. Nkambou, Improving adam optimizer (2018)."},{"key":"10.1016\/j.neucom.2023.126435_b0465","first-page":"1","article-title":"Improved adam optimizer for deep neural networks","volume":"2018","author":"Zhang","year":"2018","journal-title":"2018 IEEE\/ACM 26th International Symposium on Quality of Service (IWQoS), IEEE"},{"key":"10.1016\/j.neucom.2023.126435_b0470","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0475","doi-asserted-by":"crossref","DOI":"10.2202\/1544-6115.1309","article-title":"Super learner","volume":"6","author":"Van der Laan","year":"2007","journal-title":"Statistical Applications in Genetics and Molecular Biology"},{"issue":"2","key":"10.1016\/j.neucom.2023.126435_b0480","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.stamet.2005.02.003","article-title":"Asymptotics of cross-validated risk estimation in estimator selection and performance assessment","volume":"2","author":"Dudoit","year":"2005","journal-title":"Stat. Methodol."},{"issue":"12","key":"10.1016\/j.neucom.2023.126435_b0485","doi-asserted-by":"crossref","first-page":"2216","DOI":"10.1080\/02664763.2019.1582614","article-title":"Propensity score prediction for electronic healthcare databases using super learner and high-dimensional propensity score methods","volume":"46","author":"Ju","year":"2019","journal-title":"J. Appl. Stat."},{"key":"10.1016\/j.neucom.2023.126435_b0490","series-title":"Canadian conference on artificial intelligence","first-page":"84","article-title":"Deep super learner: A deep ensemble for classification problems","author":"Young","year":"2018"},{"year":"2015","series-title":"Aeronautical climatology of valladolid\/villanubla","author":"AEMET","key":"10.1016\/j.neucom.2023.126435_b0495"},{"volume":"vol. 326","year":"1998","author":"Draper","key":"10.1016\/j.neucom.2023.126435_b0500"},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0505","first-page":"14","article-title":"Classification and regression trees","volume":"1","author":"Loh","year":"2011","journal-title":"Wiley interdisciplinary reviews: data mining and knowledge discovery"},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0510","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.neucom.2023.126435_b0515","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"J. Roy. Stat. Soc.: Ser. B (Methodol.)"},{"key":"10.1016\/j.neucom.2023.126435_b0520","doi-asserted-by":"crossref","unstructured":"M. Awad, R. Khanna, Support vector regression, in: Efficient learning machines, Springer, 2015, pp. 67\u201380.","DOI":"10.1007\/978-1-4302-5990-9_4"},{"key":"10.1016\/j.neucom.2023.126435_b0525","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1109\/ICNNB.2005.1614615","article-title":"Comparison of SVM and LS-SVM for regression","volume":"2005","author":"Wang","year":"2005","journal-title":"2005 International conference on neural networks and brain, vol. 1, IEEE"},{"key":"10.1016\/j.neucom.2023.126435_b0530","doi-asserted-by":"crossref","first-page":"2627","DOI":"10.1016\/S1352-2310(97)00447-0","article-title":"Artificial neural networks (multilayer perceptron)\u2013 a review of applications in the atmospheric sciences","volume":"32","author":"Gardner","year":"1998","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.neucom.2023.126435_b0535","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: Theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2023.126435_b0540","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/0925-2312(94)90053-1","article-title":"Learning and generalization characteristics of the random vector functional-link net","volume":"6","author":"Pao","year":"1994","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2023.126435_b0545","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.apenergy.2015.08.011","article-title":"An analog ensemble for short-term probabilistic solar power forecast","volume":"157","author":"Alessandrini","year":"2015","journal-title":"Appl. Energy"},{"key":"10.1016\/j.neucom.2023.126435_b0550","doi-asserted-by":"crossref","first-page":"768","DOI":"10.1016\/j.renene.2014.11.061","article-title":"A novel application of an analog ensemble for short-term wind power forecasting","volume":"76","author":"Alessandrini","year":"2015","journal-title":"Renewable Energy"},{"key":"10.1016\/j.neucom.2023.126435_b0555","doi-asserted-by":"crossref","first-page":"761","DOI":"10.1016\/j.renene.2014.08.060","article-title":"Wind resource estimates with an analog ensemble approach","volume":"74","author":"Vanvyve","year":"2015","journal-title":"Renewable Energy"},{"key":"10.1016\/j.neucom.2023.126435_b0560","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.gloplacha.2019.04.013","article-title":"Near-optimal selection of representative measuring points for robust temperature field reconstruction with the CRO-SL and analogue methods","volume":"178","author":"Salcedo-Sanz","year":"2019","journal-title":"Global Planet. Change"},{"issue":"10","key":"10.1016\/j.neucom.2023.126435_b0565","doi-asserted-by":"crossref","first-page":"1704","DOI":"10.3390\/atmos13101704","article-title":"Analog ensemble forecasting system for low-visibility conditions over the main airports of morocco","volume":"13","author":"Alaoui","year":"2022","journal-title":"Atmosphere"},{"issue":"4","key":"10.1016\/j.neucom.2023.126435_b0570","doi-asserted-by":"crossref","first-page":"636","DOI":"10.1175\/1520-0469(1969)26<636:APARBN>2.0.CO;2","article-title":"Atmospheric predictability as revealed by naturally occurring analogues","volume":"26","author":"Lorenz","year":"1969","journal-title":"J. Atmos. Sci."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005581?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005581?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T02:31:58Z","timestamp":1729564318000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231223005581"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":114,"alternative-id":["S0925231223005581"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126435","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep learning ensembles for accurate fog-related low-visibility events forecasting","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126435","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"126435"}}