{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,27]],"date-time":"2024-08-27T23:55:04Z","timestamp":1724802904181},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61936004","62236005","U1913602"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.neucom.2023.126427","type":"journal-article","created":{"date-parts":[[2023,6,12]],"date-time":"2023-06-12T15:46:55Z","timestamp":1686584815000},"page":"126427","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["GraphMFT: A graph network based multimodal fusion technique for emotion recognition in conversation"],"prefix":"10.1016","volume":"550","author":[{"given":"Jiang","family":"Li","sequence":"first","affiliation":[]},{"given":"Xiaoping","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Guoqing","family":"Lv","sequence":"additional","affiliation":[]},{"given":"Zhigang","family":"Zeng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2023.126427_b0005","first-page":"37","article-title":"A conversational robot in an elderly care center: an ethnographic study","volume":"2011","author":"Sabelli","year":"2011","journal-title":"2011 6th ACM\/IEEE international conference on human-robot interaction, IEEE"},{"issue":"7","key":"10.1016\/j.neucom.2023.126427_b0010","doi-asserted-by":"crossref","first-page":"4873","DOI":"10.1007\/s10462-021-10030-2","article-title":"Over a decade of social opinion mining: a systematic review","volume":"54","author":"Cortis","year":"2021","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.neucom.2023.126427_b0015","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.knosys.2019.104886","article-title":"Bagged support vector machines for emotion recognition from speech","volume":"184","author":"Bhavan","year":"2019","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.neucom.2023.126427_b0020","unstructured":"W. Jiao, H. Yang, I. King, M.R. Lyu, Higru: Hierarchical gated recurrent units for utterance-level emotion recognition, arXiv preprint arXiv:1904.04446 (2019)."},{"key":"10.1016\/j.neucom.2023.126427_b0025","doi-asserted-by":"crossref","unstructured":"N. Majumder, S. Poria, D. Hazarika, R. Mihalcea, A. Gelbukh, E. Cambria, Dialoguernn: An attentive rnn for emotion detection in conversations, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 6818\u20136825.","DOI":"10.1609\/aaai.v33i01.33016818"},{"key":"10.1016\/j.neucom.2023.126427_b0030","doi-asserted-by":"crossref","unstructured":"D. Ghosal, N. Majumder, A. Gelbukh, R. Mihalcea, S. Poria, Cosmic: Commonsense knowledge for emotion identification in conversations, arXiv preprint arXiv:2010.02795 (2020).","DOI":"10.18653\/v1\/2020.findings-emnlp.224"},{"key":"10.1016\/j.neucom.2023.126427_b0035","doi-asserted-by":"crossref","unstructured":"D. Hu, L. Wei, X. Huai, Dialoguecrn: Contextual reasoning networks for emotion recognition in conversations, arXiv preprint arXiv:2106.01978 (2021).","DOI":"10.18653\/v1\/2021.acl-long.547"},{"issue":"8","key":"10.1016\/j.neucom.2023.126427_b0040","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1037\/0003-066X.46.8.819","article-title":"Progress on a cognitive-motivational-relational theory of emotion","volume":"46","author":"Lazarus","year":"1991","journal-title":"Am. Psychol."},{"key":"10.1016\/j.neucom.2023.126427_b0045","unstructured":"T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907 (2016)."},{"key":"10.1016\/j.neucom.2023.126427_b0050","doi-asserted-by":"crossref","unstructured":"D. Ghosal, N. Majumder, S. Poria, N. Chhaya, A. Gelbukh, Dialoguegcn: A graph convolutional neural network for emotion recognition in conversation, arXiv preprint arXiv:1908.11540 (2019).","DOI":"10.18653\/v1\/D19-1015"},{"key":"10.1016\/j.neucom.2023.126427_b0055","doi-asserted-by":"crossref","unstructured":"T. Ishiwatari, Y. Yasuda, T. Miyazaki, J. Goto, Relation-aware graph attention networks with relational position encodings for emotion recognition in conversations, in: Proceedings of Conference on Empirical Methods in Natural Language Processing, 2020, pp. 7360\u20137370.","DOI":"10.18653\/v1\/2020.emnlp-main.597"},{"key":"10.1016\/j.neucom.2023.126427_b0060","doi-asserted-by":"crossref","unstructured":"P. Zhong, D. Wang, C. Miao, Knowledge-enriched transformer for emotion detection in textual conversations, arXiv preprint arXiv:1909.10681 (2019).","DOI":"10.18653\/v1\/D19-1016"},{"key":"10.1016\/j.neucom.2023.126427_b0065","doi-asserted-by":"crossref","unstructured":"W. Shen, S. Wu, Y. Yang, X. Quan, Directed acyclic graph network for conversational emotion recognition, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, 2021, pp. 1551\u20131560.","DOI":"10.18653\/v1\/2021.acl-long.123"},{"key":"10.1016\/j.neucom.2023.126427_b0070","series-title":"Modeling both context-and speaker-sensitive dependence for emotion detection in multi-speaker conversations","first-page":"5415","author":"Zhang","year":"2019"},{"key":"10.1016\/j.neucom.2023.126427_b0075","doi-asserted-by":"crossref","unstructured":"J. Hu, Y. Liu, J. Zhao, Q. Jin, Mmgcn: Multimodal fusion via deep graph convolution network for emotion recognition in conversation, arXiv preprint arXiv:2107.06779 (2021).","DOI":"10.18653\/v1\/2021.acl-long.440"},{"issue":"1","key":"10.1016\/j.neucom.2023.126427_b0080","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/TNNLS.2020.2978386","article-title":"A comprehensive survey on graph neural networks","volume":"32","author":"Wu","year":"2020","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.neucom.2023.126427_b0085","doi-asserted-by":"crossref","unstructured":"Z. Jia, Y. Lin, J. Wang, Z. Feng, X. Xie, C. Chen, Hetemotionnet: two-stream heterogeneous graph recurrent neural network for multi-modal emotion recognition, in: Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 1047\u20131056.","DOI":"10.1145\/3474085.3475583"},{"key":"10.1016\/j.neucom.2023.126427_b0090","unstructured":"M. Chen, Z. Wei, Z. Huang, B. Ding, Y. Li, Simple and deep graph convolutional networks, in: International conference on machine learning, PMLR, 2020, pp. 1725\u20131735."},{"key":"10.1016\/j.neucom.2023.126427_b0095","doi-asserted-by":"crossref","unstructured":"W. Shen, J. Chen, X. Quan, Z. Xie, Dialogxl: All-in-one xlnet for multi-party conversation emotion recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, 2021, pp. 13789\u201313797.","DOI":"10.1609\/aaai.v35i15.17625"},{"key":"10.1016\/j.neucom.2023.126427_b0100","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.inffus.2017.02.003","article-title":"A review of affective computing: From unimodal analysis to multimodal fusion","volume":"37","author":"Poria","year":"2017","journal-title":"Inform. Fusion"},{"key":"10.1016\/j.neucom.2023.126427_b0105","doi-asserted-by":"crossref","unstructured":"D. Hazarika, S. Poria, A. Zadeh, E. Cambria, L.-P. Morency, R. Zimmermann, Conversational memory network for emotion recognition in dyadic dialogue videos, in: Proceedings of the conference on Association for Computational Linguistics, 2018, pp. 2122\u20132132.","DOI":"10.18653\/v1\/N18-1193"},{"key":"10.1016\/j.neucom.2023.126427_b0110","doi-asserted-by":"crossref","unstructured":"D. Hazarika, S. Poria, R. Mihalcea, E. Cambria, R. Zimmermann, Icon: Interactive conversational memory network for multimodal emotion detection, in: Proceedings of the 2018 conference on empirical methods in natural language processing, 2018, pp. 2594\u20132604.","DOI":"10.18653\/v1\/D18-1280"},{"key":"10.1016\/j.neucom.2023.126427_b0115","first-page":"5634","volume":"32","author":"Zadeh","year":"2018","journal-title":"Memory fusion network for multi-view sequential learning"},{"key":"10.1016\/j.neucom.2023.126427_b0120","doi-asserted-by":"crossref","unstructured":"S. Poria, E. Cambria, D. Hazarika, N. Majumder, A. Zadeh, L.-P. Morency, Context-dependent sentiment analysis in user-generated videos, in: Proceedings of the 55th annual meeting of the association for computational linguistics, 2017, pp. 873\u2013883.","DOI":"10.18653\/v1\/P17-1081"},{"key":"10.1016\/j.neucom.2023.126427_b0125","article-title":"Inductive representation learning on large graphs","volume":"30","author":"Hamilton","year":"2017","journal-title":"Adv. Neural Inform. Process. Syst."},{"key":"10.1016\/j.neucom.2023.126427_b0130","unstructured":"P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Li\u00f2, Y. Bengio, Graph attention networks, in: International Conference on Learning Representations, 2018."},{"issue":"2","key":"10.1016\/j.neucom.2023.126427_b0135","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1109\/TPAMI.2018.2798607","article-title":"Multimodal machine learning: A survey and taxonomy","volume":"41","author":"Baltru\u0161aitis","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2023.126427_b0140","doi-asserted-by":"crossref","unstructured":"K. Yang, H. Xu, K. Gao, Cm-bert: Cross-modal bert for text-audio sentiment analysis, in: Proceedings of the 28th ACM international conference on multimedia, 2020, pp. 521\u2013528.","DOI":"10.1145\/3394171.3413690"},{"key":"10.1016\/j.neucom.2023.126427_b0145","doi-asserted-by":"crossref","unstructured":"A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim, W.T. Freeman, M. Rubinstein, Looking to listen at the cocktail party: A speaker-independent audio-visual model for speech separation, arXiv preprint arXiv:1804.03619 (2018).","DOI":"10.1145\/3197517.3201357"},{"key":"10.1016\/j.neucom.2023.126427_b0150","first-page":"19","article-title":"Multilogue-net: A context aware rnn for multi-modal emotion detection and sentiment analysis in conversation","volume":"2020","author":"Shenoy","year":"2020","journal-title":"ACL"},{"key":"10.1016\/j.neucom.2023.126427_b0155","doi-asserted-by":"crossref","unstructured":"S. Sahay, S.H. Kumar, R. Xia, J. Huang, L. Nachman, Multimodal relational tensor network for sentiment and emotion classification, arXiv preprint arXiv:1806.02923 (2018).","DOI":"10.18653\/v1\/W18-3303"},{"key":"10.1016\/j.neucom.2023.126427_b0160","series-title":"ICASSP 2020\u20132020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"4477","article-title":"Gated mechanism for attention based multi modal sentiment analysis","author":"Kumar","year":"2020"},{"key":"10.1016\/j.neucom.2023.126427_b0165","doi-asserted-by":"crossref","unstructured":"M. Chen, S. Wang, P.P. Liang, T. Baltru\u0161aitis, A. Zadeh, L.-P. Morency, Multimodal sentiment analysis with word-level fusion and reinforcement learning, in: Proceedings of the 19th ACM international conference on multimodal interaction, 2017, pp. 163\u2013171.","DOI":"10.1145\/3136755.3136801"},{"key":"10.1016\/j.neucom.2023.126427_b0170","doi-asserted-by":"crossref","unstructured":"W. Han, H. Chen, A. Gelbukh, A. Zadeh, L.-P. Morency, S. Poria, Bi-bimodal modality fusion for correlation-controlled multimodal sentiment analysis, in: Proceedings of the 2021 International Conference on Multimodal Interaction, 2021, pp. 6\u201315.","DOI":"10.1145\/3462244.3479919"},{"key":"10.1016\/j.neucom.2023.126427_b0175","doi-asserted-by":"crossref","unstructured":"G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"issue":"9\u201310","key":"10.1016\/j.neucom.2023.126427_b0180","doi-asserted-by":"crossref","first-page":"1062","DOI":"10.1016\/j.specom.2011.01.011","article-title":"Recognizing realistic emotions and affect in speech: State of the art and lessons learnt from the first challenge","volume":"53","author":"Schuller","year":"2011","journal-title":"Speech Commun."},{"key":"10.1016\/j.neucom.2023.126427_b0185","doi-asserted-by":"crossref","unstructured":"Y. Kim, Convolutional neural networks for sentence classification, in: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 2014, pp. 1746\u20131751.","DOI":"10.3115\/v1\/D14-1181"},{"key":"10.1016\/j.neucom.2023.126427_b0190","article-title":"Deepgcns: Making gcns go as deep as cnns","author":"Li","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2023.126427_b0195","doi-asserted-by":"crossref","unstructured":"A. Zadeh, M. Chen, S. Poria, E. Cambria, L.-P. Morency, Tensor fusion network for multimodal sentiment analysis, arXiv preprint arXiv:1707.07250 (2017).","DOI":"10.18653\/v1\/D17-1115"},{"key":"10.1016\/j.neucom.2023.126427_b0200","doi-asserted-by":"crossref","unstructured":"S. Poria, D. Hazarika, N. Majumder, G. Naik, E. Cambria, R. Mihalcea, Meld: A multimodal multi-party dataset for emotion recognition in conversations, arXiv preprint arXiv:1810.02508 (2018).","DOI":"10.18653\/v1\/P19-1050"},{"issue":"4","key":"10.1016\/j.neucom.2023.126427_b0205","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1007\/s10579-008-9076-6","article-title":"Iemocap: Interactive emotional dyadic motion capture database","volume":"42","author":"Busso","year":"2008","journal-title":"Language Resour. Evaluat."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005507?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005507?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T13:59:50Z","timestamp":1706536790000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231223005507"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":41,"alternative-id":["S0925231223005507"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126427","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"GraphMFT: A graph network based multimodal fusion technique for emotion recognition in conversation","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126427","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"126427"}}