{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:59:16Z","timestamp":1732042756733},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.neucom.2023.126406","type":"journal-article","created":{"date-parts":[[2023,6,7]],"date-time":"2023-06-07T23:42:49Z","timestamp":1686181369000},"page":"126406","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Decorrelated spectral regression: An unsupervised dimension reduction method under data selection bias"],"prefix":"10.1016","volume":"549","author":[{"given":"Xiuqi","family":"Huang","sequence":"first","affiliation":[]},{"given":"Haotian","family":"Ni","sequence":"additional","affiliation":[]},{"given":"Tingjin","family":"Luo","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Tao","sequence":"additional","affiliation":[]},{"given":"Chenping","family":"Hou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2023.126406_b0005","doi-asserted-by":"crossref","first-page":"153","DOI":"10.2307\/1912352","article-title":"Sample selection bias as a specification error","author":"Heckman","year":"1979","journal-title":"Econometrica: Journal of the econometric society"},{"key":"10.1016\/j.neucom.2023.126406_b0010","article-title":"Correcting sample selection bias by unlabeled data","volume":"19","author":"Huang","year":"2006","journal-title":"Advances in neural information processing systems"},{"key":"10.1016\/j.neucom.2023.126406_b0015","doi-asserted-by":"crossref","unstructured":"X. Wang, S. Fan, K. Kuang, C. Shi, J. Liu, B. Wang, Decorrelated clustering with data selection bias, in: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021, pp. 2177\u20132183.","DOI":"10.24963\/ijcai.2020\/301"},{"key":"10.1016\/j.neucom.2023.126406_b0020","doi-asserted-by":"crossref","unstructured":"Z. Shen, P. Cui, K. Kuang, B. Li, P. Chen, Causally regularized learning with agnostic data selection bias, in: Proceedings of the 26th ACM international conference on Multimedia, 2018, pp. 411\u2013419.","DOI":"10.1145\/3240508.3240577"},{"key":"10.1016\/j.neucom.2023.126406_b0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.cosrev.2021.100378","article-title":"Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, t-sne)","volume":"40","author":"Anowar","year":"2021","journal-title":"Computer Science Review"},{"key":"10.1016\/j.neucom.2023.126406_b0030","series-title":"International Conference on Computing, Communication & Automation","first-page":"133","article-title":"Study of dimension reduction methodologies in data mining","author":"Sharma","year":"2015"},{"issue":"2","key":"10.1016\/j.neucom.2023.126406_b0035","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1109\/34.908974","article-title":"Pca versus lda","volume":"23","author":"Martinez","year":"2001","journal-title":"IEEE transactions on pattern analysis and machine intelligence"},{"key":"10.1016\/j.neucom.2023.126406_b0040","doi-asserted-by":"crossref","unstructured":"I. Jolliffe, Principal component analysis, Encyclopedia of statistics in behavioral science (2005).","DOI":"10.1002\/0470013192.bsa501"},{"issue":"10","key":"10.1016\/j.neucom.2023.126406_b0045","doi-asserted-by":"crossref","first-page":"2067","DOI":"10.1016\/S0031-3203(00)00162-X","article-title":"A direct LDA algorithm for high-dimensional data\u2013with application to face recognition","volume":"34","author":"Yu","year":"2001","journal-title":"Pattern recognition"},{"issue":"5500","key":"10.1016\/j.neucom.2023.126406_b0050","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1126\/science.290.5500.2323","article-title":"Nonlinear dimensionality reduction by locally linear embedding","volume":"290","author":"Roweis","year":"2000","journal-title":"Science"},{"key":"10.1016\/j.neucom.2023.126406_b0055","article-title":"Locality preserving projections","volume":"16","author":"He","year":"2003","journal-title":"Advances in neural information processing systems"},{"issue":"5500","key":"10.1016\/j.neucom.2023.126406_b0060","doi-asserted-by":"crossref","first-page":"2319","DOI":"10.1126\/science.290.5500.2319","article-title":"A global geometric framework for nonlinear dimensionality reduction","volume":"290","author":"Tenenbaum","year":"2000","journal-title":"Science"},{"key":"10.1016\/j.neucom.2023.126406_b0065","article-title":"Laplacian eigenmaps and spectral techniques for embedding and clustering","volume":"14","author":"Belkin","year":"2001","journal-title":"Advances in neural information processing systems"},{"issue":"1\u20132","key":"10.1016\/j.neucom.2023.126406_b0070","first-page":"321","article-title":"A comparison of pca, kpca and ica for dimensionality reduction in support vector machine","volume":"55","author":"Cao","year":"2003","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2023.126406_b0075","series-title":"Handbook of neural network signal processing","article-title":"An introduction to kernel-based learning algorithms","author":"M\u00fcller","year":"2018"},{"key":"10.1016\/j.neucom.2023.126406_b0080","first-page":"830","article-title":"Graph embedding: A general framework for dimensionality reduction","volume":"Vol. 2","author":"Yan","year":"2005"},{"key":"10.1016\/j.neucom.2023.126406_b0085","first-page":"1208","article-title":"Neighborhood preserving embedding","volume":"Volume 1, Vol. 2","author":"He","year":"2005"},{"issue":"1","key":"10.1016\/j.neucom.2023.126406_b0090","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.patcog.2009.05.005","article-title":"Sparsity preserving projections with applications to face recognition","volume":"43","author":"Qiao","year":"2010","journal-title":"Pattern Recognition"},{"issue":"4","key":"10.1016\/j.neucom.2023.126406_b0095","doi-asserted-by":"crossref","first-page":"650","DOI":"10.1109\/TPAMI.2007.1008","article-title":"Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics","volume":"29","author":"Yang","year":"2007","journal-title":"IEEE transactions on pattern analysis and machine intelligence"},{"issue":"1","key":"10.1016\/j.neucom.2023.126406_b0100","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1109\/TPAMI.2007.250598","article-title":"Graph embedding and extensions: A general framework for dimensionality reduction","volume":"29","author":"Yan","year":"2006","journal-title":"IEEE transactions on pattern analysis and machine intelligence"},{"issue":"1","key":"10.1016\/j.neucom.2023.126406_b0105","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1093\/biomet\/70.1.41","article-title":"The central role of the propensity score in observational studies for causal effects","volume":"70","author":"Rosenbaum","year":"1983","journal-title":"Biometrika"},{"issue":"1","key":"10.1016\/j.neucom.2023.126406_b0110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1214\/09-STS313","article-title":"Matching methods for causal inference: A review and a look forward","volume":"25","author":"Stuart","year":"2010","journal-title":"Statistical science: a review journal of the Institute of Mathematical Statistics"},{"issue":"1","key":"10.1016\/j.neucom.2023.126406_b0115","first-page":"74","article-title":"Earnings and employment effects of continuous gff-the-job training in east germany after unification","volume":"17","author":"Lechner","year":"1999","journal-title":"Journal of Business & Economic Statistics"},{"issue":"7","key":"10.1016\/j.neucom.2023.126406_b0120","doi-asserted-by":"crossref","first-page":"761","DOI":"10.1093\/aje\/kwq439","article-title":"Doubly robust estimation of causal effects","volume":"173","author":"Funk","year":"2011","journal-title":"American journal of epidemiology"},{"issue":"1","key":"10.1016\/j.neucom.2023.126406_b0125","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1093\/pan\/mpr025","article-title":"Entropy balancing for causal effects: A multivariate reweighting method to produce balanced samples in observational studies","volume":"20","author":"Hainmueller","year":"2012","journal-title":"Political analysis"},{"issue":"4","key":"10.1016\/j.neucom.2023.126406_b0130","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1111\/rssb.12268","article-title":"Approximate residual balancing: debiased inference of average treatment effects in high dimensions","volume":"80","author":"Athey","year":"2018","journal-title":"Journal of the Royal Statistical Society: Series B (Statistical Methodology)"},{"key":"10.1016\/j.neucom.2023.126406_b0135","doi-asserted-by":"crossref","unstructured":"K. Kuang, P. Cui, B. Li, M. Jiang, S. Yang, Estimating treatment effect in the wild via differentiated confounder balancing, in: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017, pp. 265\u2013274.","DOI":"10.1145\/3097983.3098032"},{"key":"10.1016\/j.neucom.2023.126406_b0140","series-title":"Seventh IEEE international conference on data mining (ICDM 2007)","first-page":"73","article-title":"Spectral regression: A unified approach for sparse subspace learning","author":"Cai","year":"2007"},{"key":"10.1016\/j.neucom.2023.126406_b0145","first-page":"1208","article-title":"Neighborhood preserving embedding","volume":"Volume 1, Vol. 2","author":"He","year":"2005"},{"key":"10.1016\/j.neucom.2023.126406_b0150","series-title":"2007 IEEE 11th international conference on computer vision","first-page":"1","article-title":"Spectral regression for efficient regularized subspace learning","author":"Cai","year":"2007"},{"key":"10.1016\/j.neucom.2023.126406_b0155","doi-asserted-by":"crossref","unstructured":"K. Kuang, P. Cui, S. Athey, R. Xiong, B. Li, Stable prediction across unknown environments, in: proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 1617\u20131626.","DOI":"10.1145\/3219819.3220082"},{"key":"10.1016\/j.neucom.2023.126406_b0160","doi-asserted-by":"crossref","unstructured":"M. Long, J. Wang, G. Ding, J. Sun, P. S. Yu, Transfer joint matching for unsupervised domain adaptation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 1410\u20131417.","DOI":"10.1109\/CVPR.2014.183"},{"key":"10.1016\/j.neucom.2023.126406_b0165","series-title":"2012 IEEE conference on computer vision and pattern recognition","first-page":"2066","article-title":"Geodesic flow kernel for unsupervised domain adaptation","author":"Gong","year":"2012"},{"key":"10.1016\/j.neucom.2023.126406_b0170","doi-asserted-by":"crossref","unstructured":"H. Venkateswara, J. Eusebio, S. Chakraborty, S. Panchanathan, Deep hashing network for unsupervised domain adaptation, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 5018\u20135027.","DOI":"10.1109\/CVPR.2017.572"},{"key":"10.1016\/j.neucom.2023.126406_b0175","series-title":"European conference on computer vision","first-page":"404","article-title":"Surf: Speeded up robust features","author":"Bay","year":"2006"},{"key":"10.1016\/j.neucom.2023.126406_b0180","first-page":"2","article-title":"A new benchmark dataset for handwritten character recognition","author":"Van der Maaten","year":"2009","journal-title":"Tilburg University"},{"issue":"5552","key":"10.1016\/j.neucom.2023.126406_b0185","doi-asserted-by":"crossref","DOI":"10.1126\/science.295.5552.7a","article-title":"The isomap algorithm and topological stability","volume":"295","author":"Balasubramanian","year":"2002","journal-title":"Science"},{"issue":"11","key":"10.1016\/j.neucom.2023.126406_b0190","doi-asserted-by":"crossref","first-page":"6844","DOI":"10.1109\/TNNLS.2021.3083695","article-title":"Unsupervised adaptive embedding for dimensionality reduction","volume":"33","author":"Wang","year":"2021","journal-title":"IEEE Transactions on Neural Networks and Learning Systems"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005295?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005295?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,13]],"date-time":"2023-10-13T01:16:19Z","timestamp":1697159779000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231223005295"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":38,"alternative-id":["S0925231223005295"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126406","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Decorrelated spectral regression: An unsupervised dimension reduction method under data selection bias","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126406","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"126406"}}