{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:59:11Z","timestamp":1732042751995},"reference-count":29,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.neucom.2023.126391","type":"journal-article","created":{"date-parts":[[2023,6,3]],"date-time":"2023-06-03T15:23:20Z","timestamp":1685805800000},"page":"126391","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":42,"special_numbering":"C","title":["Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer"],"prefix":"10.1016","volume":"548","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2093-8306","authenticated-orcid":false,"given":"Yafei","family":"Deng","sequence":"first","affiliation":[]},{"given":"Jun","family":"Lv","sequence":"additional","affiliation":[]},{"given":"Delin","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Shichang","family":"Du","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2023.126391_b0005","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.neucom.2020.04.045","article-title":"A systematic review of deep transfer learning for machinery fault diagnosis","volume":"407","author":"Li","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2023.126391_b0010","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.neucom.2020.05.040","article-title":"Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis with unlabeled or insufficient labeled data","volume":"409","author":"Cheng","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2023.126391_b0015","doi-asserted-by":"crossref","first-page":"105950","DOI":"10.1016\/j.asoc.2019.105950","article-title":"Fault diagnostics between different type of components: A transfer learning approach","volume":"86","author":"Li","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.neucom.2023.126391_b0020","doi-asserted-by":"crossref","first-page":"108487","DOI":"10.1016\/j.ymssp.2021.108487","article-title":"A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: Theories, applications and challenges","volume":"167","author":"Li","year":"2022","journal-title":"Mech. Syst. Sig. Process."},{"issue":"9","key":"10.1016\/j.neucom.2023.126391_b0025","doi-asserted-by":"crossref","first-page":"6163","DOI":"10.1109\/TII.2019.2950667","article-title":"Retraining strategy-based domain adaption network for intelligent fault diagnosis","volume":"16","author":"Song","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.neucom.2023.126391_b0030","first-page":"1","article-title":"Deep domain generalization combining a priori diagnosis knowledge toward cross-domain fault diagnosis of rolling bearing","volume":"70","author":"Zheng","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.neucom.2023.126391_b0035","doi-asserted-by":"crossref","first-page":"14347","DOI":"10.1109\/ACCESS.2017.2720965","article-title":"Transfer learning with neural networks for bearing fault diagnosis in changing working conditions","volume":"5","author":"Zhang","year":"2017","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.neucom.2023.126391_b0040","doi-asserted-by":"crossref","first-page":"2446","DOI":"10.1109\/TII.2018.2864759","article-title":"Highly accurate machine fault diagnosis using deep transfer learning","volume":"15","author":"Shao","year":"2018","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.neucom.2023.126391_b0045","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1016\/j.ymssp.2018.12.051","article-title":"An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings","volume":"122","author":"Yang","year":"2019","journal-title":"Mech. Syst. Sig. Process."},{"key":"10.1016\/j.neucom.2023.126391_b0050","doi-asserted-by":"crossref","first-page":"110332","DOI":"10.1016\/j.measurement.2021.110332","article-title":"Joint distribution adaptation with diverse feature aggregation: A new transfer learning framework for bearing diagnosis across different machines","volume":"187","author":"Jia","year":"2022","journal-title":"Measurement"},{"issue":"7","key":"10.1016\/j.neucom.2023.126391_b0055","doi-asserted-by":"crossref","first-page":"5525","DOI":"10.1109\/TIE.2018.2868023","article-title":"Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks","volume":"66","author":"Li","year":"2018","journal-title":"IEEE Trans. Ind. Electron."},{"key":"10.1016\/j.neucom.2023.126391_b0060","doi-asserted-by":"crossref","first-page":"103399","DOI":"10.1016\/j.compind.2021.103399","article-title":"A double-layer attention based adversarial network for partial transfer learning in machinery fault diagnosis","volume":"127","author":"Deng","year":"2021","journal-title":"Comput. Ind."},{"issue":"1","key":"10.1016\/j.neucom.2023.126391_b0065","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1109\/TSMC.2017.2754287","article-title":"A new deep transfer learning based on sparse auto-encoder for fault diagnosis","volume":"49","author":"Wen","year":"2017","journal-title":"IEEE Trans. Systems, Man, Cybern.: Syst."},{"key":"10.1016\/j.neucom.2023.126391_b0070","doi-asserted-by":"crossref","unstructured":"Panareda Busto, P., & Gall, J. (2017). Open set domain adaptation. In Proceedings of the IEEE international conference on computer vision (pp. 754-763).","DOI":"10.1109\/ICCV.2017.88"},{"key":"10.1016\/j.neucom.2023.126391_b0075","doi-asserted-by":"crossref","unstructured":"Saito, K., Yamamoto, S., Ushiku, Y., & Harada, T. (2018). Open set domain adaptation by backpropagation. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 153-168).","DOI":"10.1007\/978-3-030-01228-1_10"},{"key":"10.1016\/j.neucom.2023.126391_b0080","doi-asserted-by":"crossref","unstructured":"Liu, H., Cao, Z., Long, M., Wang, J., & Yang, Q. (2019). Separate to adapt: Open set domain adaptation via progressive separation. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (pp. 2927-2936).","DOI":"10.1109\/CVPR.2019.00304"},{"key":"10.1016\/j.neucom.2023.126391_b0085","doi-asserted-by":"crossref","unstructured":"Fu, B., Cao, Z., Long, M., & Wang, J. (2020, August). Learning to detect open classes for universal domain adaptation. In European Conference on Computer Vision (pp. 567-583). Springer, Cham.","DOI":"10.1007\/978-3-030-58555-6_34"},{"issue":"15","key":"10.1016\/j.neucom.2023.126391_b0090","doi-asserted-by":"crossref","first-page":"8413","DOI":"10.1109\/JSEN.2020.2975286","article-title":"A deep adversarial transfer learning network for machinery emerging fault detection","volume":"20","author":"Li","year":"2020","journal-title":"IEEE Sens. J."},{"issue":"11","key":"10.1016\/j.neucom.2023.126391_b0095","doi-asserted-by":"crossref","first-page":"7445","DOI":"10.1109\/TII.2021.3054651","article-title":"Open set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning","volume":"17","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.neucom.2023.126391_b0100","article-title":"Cross-domain open set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers","author":"Zhu","year":"2021","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.neucom.2023.126391_b0105","unstructured":"Luo, Y., Wang, Z., Huang, Z., & Baktashmotlagh, M. (2020, November). Progressive graph learning for open-set domain adaptation. In International Conference on Machine Learning (pp. 6468-6478). PMLR."},{"key":"10.1016\/j.neucom.2023.126391_b0110","unstructured":"Zhang, Y., Liu, T., Long, M., & Jordan, M. (2019, May). Bridging theory and algorithm for domain adaptation. In International Conference on Machine Learning (pp. 7404-7413). PMLR."},{"key":"10.1016\/j.neucom.2023.126391_b0115","unstructured":"Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27."},{"key":"10.1016\/j.neucom.2023.126391_b0120","article-title":"Bridging the theoretical bound and deep algorithms for open set domain adaptation","author":"Zhong","year":"2021","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.neucom.2023.126391_b0125","doi-asserted-by":"crossref","unstructured":"Li, G., Kang, G., Zhu, Y., Wei, Y., & Yang, Y. (2021). Domain Consensus Clustering for Universal Domain Adaptation. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (pp. 9757-9766).","DOI":"10.1109\/CVPR46437.2021.00963"},{"key":"10.1016\/j.neucom.2023.126391_b0130","unstructured":"Bearing DataCenter, Paderborn University. [Online]. Available: https:\/\/mb.uni-paderborn.de\/kat\/forschung\/datacenter\/bearing-datacenter."},{"key":"10.1016\/j.neucom.2023.126391_b0135","unstructured":"PHM Data Challenge 2009, PHM (Prognostics and Health Management) society [Online]. Available: https:\/\/www.phmsociety.org\/competition\/PHM\/09."},{"issue":"11","key":"10.1016\/j.neucom.2023.126391_b0140","article-title":"Visualizing data using t-SNE","volume":"9","author":"Van der Maaten","year":"2008","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.neucom.2023.126391_b0145","unstructured":"Y. Zhang, B. Wallace, A sensitivity analysis of (and practitioners' guide to) convolutional neural networks for sentence classification. arXiv preprint arXiv:1510.03820, 2015."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005143?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223005143?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T13:58:56Z","timestamp":1706536736000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231223005143"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":29,"alternative-id":["S0925231223005143"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126391","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126391","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"126391"}}