{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T23:56:05Z","timestamp":1720396565860},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11725211","52005505","62001502"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.neucom.2023.126318","type":"journal-article","created":{"date-parts":[[2023,5,19]],"date-time":"2023-05-19T02:51:43Z","timestamp":1684464703000},"page":"126318","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A multi-objective memetic algorithm for automatic adversarial attack optimization design"],"prefix":"10.1016","volume":"547","author":[{"given":"Jialiang","family":"Sun","sequence":"first","affiliation":[]},{"given":"Wen","family":"Yao","sequence":"additional","affiliation":[]},{"given":"Tingsong","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Xiaoqian","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2023.126318_b0005","unstructured":"Addepalli, S., Jain, S., Sriramanan, G., Radhakrishnan, V.B., 2021. Towards achieving adversarial robustness beyond perceptual limits."},{"key":"10.1016\/j.neucom.2023.126318_b0010","unstructured":"Bernhard, R., Mo\u00ebllic, P.A., Dutertre, J.M., 2020. Luring of adversarial perturbations, in: Actes de la conf\u00e9rence CAID 2020, p. 58."},{"key":"10.1016\/j.neucom.2023.126318_b0015","unstructured":"Bhagoji, A.N., Cullina, D., Mittal, P., 2017. Dimensionality reduction as a defense against evasion attacks on machine learning classifiers. arXiv preprint arXiv:1704.02654 2."},{"key":"10.1016\/j.neucom.2023.126318_b0020","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1109\/TIP.2021.3127848","article-title":"AVLSM: adaptive variational level set model for image segmentation in the presence of severe intensity inhomogeneity and high noise","volume":"31","author":"Cai","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2023.126318_b0025","doi-asserted-by":"crossref","unstructured":"Carlini, N., Wagner, D., 2017. Towards evaluating the robustness of neural networks, in: 2017 ieee symposium on security and privacy (sp), IEEE. pp. 39\u201357.","DOI":"10.1109\/SP.2017.49"},{"key":"10.1016\/j.neucom.2023.126318_b0030","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1109\/TIP.2021.3127851","article-title":"Remote sensing scene classification via multi-branch local attention network","volume":"31","author":"Chen","year":"2022","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.neucom.2023.126318_b0035","doi-asserted-by":"crossref","first-page":"2259","DOI":"10.1016\/S0031-3203(00)00149-7","article-title":"Color image segmentation: advances and prospects","volume":"34","author":"Cheng","year":"2001","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.neucom.2023.126318_b0040","unstructured":"Croce, F., Hein, M., 2020. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks, in: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13\u201318 July 2020, Virtual Event, PMLR. pp. 2206\u20132216. URL: http:\/\/proceedings.mlr.press\/v119\/croce20b.html."},{"key":"10.1016\/j.neucom.2023.126318_b0045","doi-asserted-by":"crossref","unstructured":"Cui, J., Liu, S., Wang, L., Jia, J., 2021. Learnable boundary guided adversarial training, in: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 15721\u201315730.","DOI":"10.1109\/ICCV48922.2021.01543"},{"key":"10.1016\/j.neucom.2023.126318_b0050","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: Nsga-ii","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Trans. Evolut. Comput."},{"key":"10.1016\/j.neucom.2023.126318_b0055","unstructured":"Dhillon, G.S., Azizzadenesheli, K., Lipton, Z.C., Bernstein, J., Kossaifi, J., Khanna, A., Anandkumar, A., 2018. Stochastic activation pruning for robust adversarial defense. arXiv preprint arXiv:1803.01442."},{"key":"10.1016\/j.neucom.2023.126318_b0060","doi-asserted-by":"crossref","unstructured":"Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., Li, J., 2018. Boosting adversarial attacks with momentum, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9185\u20139193.","DOI":"10.1109\/CVPR.2018.00957"},{"key":"10.1016\/j.neucom.2023.126318_b0065","unstructured":"Goodfellow, I.J., Shlens, J., Szegedy, C., 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572."},{"key":"10.1016\/j.neucom.2023.126318_b0070","unstructured":"Gowal, S., Uesato, J., Qin, C., Huang, P.S., Mann, T., Kohli, P., 2019. An alternative surrogate loss for pgd-based adversarial testing. arXiv preprint arXiv:1910.09338."},{"key":"10.1016\/j.neucom.2023.126318_b0075","unstructured":"Guo, C., Rana, M., Cisse, M., Van Der Maaten, L., 2017. Countering adversarial images using input transformations. arXiv preprint arXiv:1711.00117."},{"key":"10.1016\/j.neucom.2023.126318_b0080","unstructured":"Jin, C., Rinard, M., 2020. Manifold regularization for adversarial robustness. arXiv preprint arXiv:2003.04286 1."},{"key":"10.1016\/j.neucom.2023.126318_b0085","doi-asserted-by":"crossref","unstructured":"Liu, Y., Cheng, Y., Gao, L., Liu, X., Zhang, Q., Song, J., 2022. Practical evaluation of adversarial robustness via adaptive auto attack, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 15105\u201315114.","DOI":"10.1109\/CVPR52688.2022.01468"},{"key":"10.1016\/j.neucom.2023.126318_b0090","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1080\/01431160600746456","article-title":"A survey of image classification methods and techniques for improving classification performance","volume":"28","author":"Lu","year":"2007","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.neucom.2023.126318_b0095","unstructured":"Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A., 2018. Towards deep learning models resistant to adversarial attacks, in: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, OpenReview.net."},{"key":"10.1016\/j.neucom.2023.126318_b0100","doi-asserted-by":"crossref","unstructured":"Mao, X., Chen, Y., Wang, S., Su, H., He, Y., Xue, H., 2021. Composite adversarial attacks, in: Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, AAAI Press. pp. 8884\u20138892.","DOI":"10.1609\/aaai.v35i10.17075"},{"key":"10.1016\/j.neucom.2023.126318_b0105","doi-asserted-by":"crossref","unstructured":"Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A., 2016. Distillation as a defense to adversarial perturbations against deep neural networks, in: 2016 IEEE symposium on security and privacy (SP), IEEE. pp. 582\u2013597.","DOI":"10.1109\/SP.2016.41"},{"key":"10.1016\/j.neucom.2023.126318_b0110","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1146\/annurev.bioeng.2.1.315","article-title":"A survey of current methods in medical image segmentation","volume":"2","author":"Pham","year":"2000","journal-title":"Annu. Rev. Biomed. Eng."},{"key":"10.1016\/j.neucom.2023.126318_b0115","unstructured":"Rebuffi, S.A., Gowal, S., Calian, D.A., Stimberg, F., Wiles, O., Mann, T., 2021. Fixing data augmentation to improve adversarial robustness. arXiv preprint arXiv:2103.01946."},{"key":"10.1016\/j.neucom.2023.126318_b0120","first-page":"8093","article-title":"Overfitting in adversarially robust deep learning","author":"Rice","year":"2020","journal-title":"International Conference on Machine Learning, PMLR"},{"key":"10.1016\/j.neucom.2023.126318_b0125","doi-asserted-by":"crossref","unstructured":"Rony, J., Hafemann, L.G., Oliveira, L.S., Ayed, I.B., Sabourin, R., Granger, E., 2019. Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and defenses, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 4322\u20134330.","DOI":"10.1109\/CVPR.2019.00445"},{"key":"10.1016\/j.neucom.2023.126318_b0130","first-page":"3533","article-title":"Do adversarially robust imagenet models transfer better?","volume":"33","author":"Salman","year":"2020","journal-title":"Adv. Neural Inform. Process. Syst."},{"key":"10.1016\/j.neucom.2023.126318_b0135","unstructured":"Shafahi, A., Ghiasi, A., Huang, F., Goldstein, T., 2019. Label smoothing and logit squeezing: a replacement for adversarial training? arXiv preprint arXiv:1910.11585."},{"key":"10.1016\/j.neucom.2023.126318_b0140","unstructured":"Szegedy, C., Toshev, A., Erhan, D., 2013. Deep neural networks for object detection. Advances in neural information processing systems 26."},{"key":"10.1016\/j.neucom.2023.126318_b0145","first-page":"1633","article-title":"On adaptive attacks to adversarial example defenses","volume":"33","author":"Tramer","year":"2020","journal-title":"Adv. Neural Inform. Process. Syst."},{"key":"10.1016\/j.neucom.2023.126318_b0150","unstructured":"Tram\u00e8r, F., Kurakin, A., Papernot, N., Goodfellow, I., Boneh, D., McDaniel, P., 2017. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204."},{"key":"10.1016\/j.neucom.2023.126318_b0155","unstructured":"Tsai, Y.Y., Hsiung, L., Chen, P.Y., Ho, T.Y., 2021. Generalizing adversarial training to composite semantic perturbations, in: ICML 2021 Workshop on Adversarial Machine Learning."},{"key":"10.1016\/j.neucom.2023.126318_b0160","doi-asserted-by":"crossref","unstructured":"Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X., 2017. Residual attention network for image classification, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3156\u20133164.","DOI":"10.1109\/CVPR.2017.683"},{"key":"10.1016\/j.neucom.2023.126318_b0165","series-title":"International Conference on Learning Representations","article-title":"Improving adversarial robustness requires revisiting misclassified examples","author":"Wang","year":"2019"},{"key":"10.1016\/j.neucom.2023.126318_b0170","unstructured":"Wong, E., Rice, L., Kolter, J.Z., 2020. Fast is better than free: Revisiting adversarial training. arXiv preprint arXiv:2001.03994."},{"key":"10.1016\/j.neucom.2023.126318_b0175","first-page":"2958","article-title":"Adversarial weight perturbation helps robust generalization","volume":"33","author":"Wu","year":"2020","journal-title":"Adv. Neural Inform. Process. Syst."},{"key":"10.1016\/j.neucom.2023.126318_b0180","article-title":"Sam: A unified self-adaptive multicompartmental spiking neuron model for learning with working memory","volume":"16","author":"Yang","year":"2022","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.neucom.2023.126318_b0185","doi-asserted-by":"crossref","DOI":"10.3389\/fnins.2021.601109","article-title":"Efficient spike-driven learning with dendritic event-based processing","volume":"15","author":"Yang","year":"2021","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.neucom.2023.126318_b0190","doi-asserted-by":"crossref","DOI":"10.3389\/fnins.2022.850932","article-title":"Heterogeneous ensemble-based spike-driven few-shot online learning","volume":"16","author":"Yang","year":"2022","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.neucom.2023.126318_b0195","doi-asserted-by":"crossref","first-page":"455","DOI":"10.3390\/e24040455","article-title":"Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion","volume":"24","author":"Yang","year":"2022","journal-title":"Entropy"},{"key":"10.1016\/j.neucom.2023.126318_b0200","unstructured":"Yao, C., Bielik, P., Tsankov, P., Vechev, M.T., 2021. Automated discovery of adaptive attacks on adversarial defenses. CoRR abs\/2102.11860. URL: https:\/\/arxiv.org\/abs\/2102.11860, arXiv:2102.11860."},{"key":"10.1016\/j.neucom.2023.126318_b0205","unstructured":"Zhang, H., Wang, J., 2019. Defense against adversarial attacks using feature scattering-based adversarial training. Advances in Neural Information Processing Systems 32."},{"key":"10.1016\/j.neucom.2023.126318_b0210","unstructured":"Zhang, H., Xu, W., 2019. Adversarial interpolation training: A simple approach for improving model robustness."},{"key":"10.1016\/j.neucom.2023.126318_b0215","first-page":"7472","article-title":"Theoretically principled trade-off between robustness and accuracy","author":"Zhang","year":"2019","journal-title":"International conference on machine learning, PMLR"},{"key":"10.1016\/j.neucom.2023.126318_b0220","doi-asserted-by":"crossref","first-page":"3212","DOI":"10.1109\/TNNLS.2018.2876865","article-title":"Object detection with deep learning: A review","volume":"30","author":"Zhao","year":"2019","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"key":"10.1016\/j.neucom.2023.126318_b0225","doi-asserted-by":"crossref","unstructured":"Zhou, Q., Yu, C., Wang, Z., Qian, Q., Li, H., 2021. Instant-teaching: An end-to-end semi-supervised object detection framework, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19\u201325, 2021, Computer Vision Foundation\/ IEEE. pp. 4081\u20134090.","DOI":"10.1109\/CVPR46437.2021.00407"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223004411?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223004411?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,12]],"date-time":"2023-10-12T21:15:31Z","timestamp":1697145331000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231223004411"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":45,"alternative-id":["S0925231223004411"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126318","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A multi-objective memetic algorithm for automatic adversarial attack optimization design","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2023.126318","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"126318"}}