{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:04:30Z","timestamp":1740117870507,"version":"3.37.3"},"reference-count":21,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100000781","name":"European Research Council","doi-asserted-by":"publisher","award":["741278"],"id":[{"id":"10.13039\/501100000781","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1016\/j.neucom.2023.02.042","type":"journal-article","created":{"date-parts":[[2023,3,2]],"date-time":"2023-03-02T02:17:27Z","timestamp":1677723447000},"page":"126116","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Model validation using mutated training labels: An exploratory study"],"prefix":"10.1016","volume":"539","author":[{"given":"Jie M.","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Mark","family":"Harman","sequence":"additional","affiliation":[]},{"given":"Benjamin","family":"Guedj","sequence":"additional","affiliation":[]},{"given":"Earl T.","family":"Barr","sequence":"additional","affiliation":[]},{"given":"John","family":"Shawe-Taylor","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2023.02.042_b0005","unstructured":"A. Asuncion, D. Newman, Uci machine learning repository, 2007."},{"key":"10.1016\/j.neucom.2023.02.042_b0010","unstructured":"T.Y. Chen, S.C. Cheung, S.M. Yiu, Metamorphic testing: a new approach for generating next test cases, 2020. arXiv preprint arXiv:2002.12543."},{"key":"10.1016\/j.neucom.2023.02.042_b0015","unstructured":"Classifier Comparison, 2019. Classifier Comparison. https:\/\/scikit-learn.org\/stable\/auto_examples\/classification\/plot_classifier_comparison.html."},{"key":"10.1016\/j.neucom.2023.02.042_b0020","series-title":"International Conference on Machine Learning","first-page":"1892","article-title":"The advantages of multiple classes for reducing overfitting from test set reuse","author":"Feldman","year":"2019"},{"key":"10.1016\/j.neucom.2023.02.042_b0025","doi-asserted-by":"crossref","unstructured":"Ghosh, A., Kumar, H., Sastry, P., 2017. Robust loss functions under label noise for deep neural networks, in: Proceedings of the AAAI Conference on Artificial Intelligence.","DOI":"10.1609\/aaai.v31i1.10894"},{"key":"10.1016\/j.neucom.2023.02.042_b0030","unstructured":"I.J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, 2014. arXiv preprint arXiv:1412.6572."},{"key":"10.1016\/j.neucom.2023.02.042_b0035","doi-asserted-by":"crossref","first-page":"2222","DOI":"10.1109\/TNNLS.2016.2582924","article-title":"Lstm: A search space odyssey","volume":"28","author":"Greff","year":"2016","journal-title":"IEEE transactions on neural networks and learning systems"},{"key":"10.1016\/j.neucom.2023.02.042_b0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s42113-018-0011-7","article-title":"Limitations of bayesian leave-one-out cross-validation for model selection","volume":"2","author":"Gronau","year":"2019","journal-title":"Computational brain & behavior"},{"key":"10.1016\/j.neucom.2023.02.042_b0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1021\/ci0342472","article-title":"The problem of overfitting","volume":"44","author":"Hawkins","year":"2004","journal-title":"Journal of chemical information and computer sciences"},{"key":"10.1016\/j.neucom.2023.02.042_b0050","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1109\/72.105415","article-title":"Using additive noise in back-propagation training","volume":"3","author":"Holmstrom","year":"1992","journal-title":"IEEE transactions on neural networks"},{"key":"10.1016\/j.neucom.2023.02.042_b0055","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1109\/TSE.2010.62","article-title":"An analysis and survey of the development of mutation testing","volume":"37","author":"Jia","year":"2010","journal-title":"IEEE transactions on software engineering"},{"key":"10.1016\/j.neucom.2023.02.042_b0060","unstructured":"Lotfi, S., Izmailov, P., Benton, G., Goldblum, M., Wilson, A.G., 2022. Bayesian model selection, the marginal likelihood, and generalization. arXiv preprint arXiv:2202.11678."},{"year":"2018","series-title":"Foundations of Machine Learning","author":"Mohri","key":"10.1016\/j.neucom.2023.02.042_b0065"},{"key":"10.1016\/j.neucom.2023.02.042_b0070","doi-asserted-by":"crossref","unstructured":"M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, M. Harman, Mutation testing advances: an analysis and survey, in: Advances in Computers. Elsevier. volume 112, 2019. pp. 275\u2013378.","DOI":"10.1016\/bs.adcom.2018.03.015"},{"key":"10.1016\/j.neucom.2023.02.042_b0075","first-page":"2825","article-title":"Scikit-learn: Machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2023.02.042_b0080","doi-asserted-by":"crossref","unstructured":"H.V. Pham, S. Qian, J. Wang, T. Lutellier, J. Rosenthal, L. Tan, Y. Yu, N. Nagappan, Problems and opportunities in training deep learning software systems: An analysis of variance, in: 2020 35th IEEE\/ACM International Conference on Automated Software Engineering (ASE), IEEE, 2020. pp. 771\u2013783.","DOI":"10.1145\/3324884.3416545"},{"key":"10.1016\/j.neucom.2023.02.042_b0085","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1007\/s11222-016-9649-y","article-title":"Comparison of bayesian predictive methods for model selection","volume":"27","author":"Piironen","year":"2017","journal-title":"Statistics and Computing"},{"key":"10.1016\/j.neucom.2023.02.042_b0090","first-page":"396","article-title":"The rademacher complexity of co-regularized kernel classes","author":"Rosenberg","year":"2007","journal-title":"Artificial Intelligence and Statistics"},{"key":"10.1016\/j.neucom.2023.02.042_b0095","unstructured":"Scikit-learn:SVM, 2020. RBF SVM parameters. https:\/\/scikit-learn.org\/stable\/auto_examples\/svm\/plot_rbf_parameters.html."},{"key":"10.1016\/j.neucom.2023.02.042_b0100","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1109\/TSE.2016.2532875","article-title":"A survey on metamorphic testing","volume":"42","author":"Segura","year":"2016","journal-title":"IEEE Transactions on software engineering"},{"key":"10.1016\/j.neucom.2023.02.042_b0105","unstructured":"C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, Understanding deep learning requires rethinking generalization. International Conference on Learning Representations (ICLR), 2017."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223001911?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231223001911?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T13:39:33Z","timestamp":1706535573000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231223001911"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6]]},"references-count":21,"alternative-id":["S0925231223001911"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2023.02.042","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2023,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Model validation using mutated training labels: An exploratory study","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2023.02.042","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"126116"}}