{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,7]],"date-time":"2024-10-07T04:04:57Z","timestamp":1728273897971},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,17]],"date-time":"2022-10-17T00:00:00Z","timestamp":1665964800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001665","name":"Agence Nationale de la Recherche","doi-asserted-by":"publisher","award":["ANR Project-20-CE23-0022"],"id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.neucom.2022.10.033","type":"journal-article","created":{"date-parts":[[2022,10,20]],"date-time":"2022-10-20T07:37:28Z","timestamp":1666251448000},"page":"36-47","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Deep semi-supervised clustering for multi-variate time-series"],"prefix":"10.1016","volume":"516","author":[{"given":"Dino","family":"Ienco","sequence":"first","affiliation":[]},{"given":"Roberto","family":"Interdonato","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.10.033_b0005","series-title":"KDD","first-page":"59","article-title":"A probabilistic framework for semi-supervised clustering","author":"Basu","year":"2004"},{"issue":"8","key":"10.1016\/j.neucom.2022.10.033_b0010","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1109\/TPAMI.2013.50","article-title":"Representation learning: A review and new perspectives","volume":"35","author":"Bengio","year":"2013","journal-title":"IEEE TPAMI"},{"key":"10.1016\/j.neucom.2022.10.033_b0015","doi-asserted-by":"crossref","unstructured":"S. Chandrakala and C. Chandra Sekhar. A density based method for multivariate time series clustering in kernel feature space. In IJCNN, pages 1885\u20131890, 2008.","DOI":"10.1109\/IJCNN.2008.4634055"},{"key":"10.1016\/j.neucom.2022.10.033_b0020","doi-asserted-by":"crossref","unstructured":"K. Cho, B. van Merrienboer, \u00c7. G\u00fcl\u00e7ehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In EMNLP, pages 1724\u20131734, 2014.","DOI":"10.3115\/v1\/D14-1179"},{"key":"10.1016\/j.neucom.2022.10.033_b0025","doi-asserted-by":"crossref","unstructured":"S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In CVPR, pages 539\u2013546, 2005.","DOI":"10.1109\/CVPR.2005.202"},{"issue":"1","key":"10.1016\/j.neucom.2022.10.033_b0030","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1007\/s00357-010-9043-y","article-title":"A fuzzy clustering model for multivariate spatial time series","volume":"27","author":"Coppi","year":"2010","journal-title":"J. Classification"},{"key":"10.1016\/j.neucom.2022.10.033_b0035","unstructured":"M. Cuturi and M. Blondel. Soft-dtw: a differentiable loss function for time-series. In ICML, pages 894\u2013903, 2017."},{"issue":"4","key":"10.1016\/j.neucom.2022.10.033_b0040","doi-asserted-by":"crossref","first-page":"1074","DOI":"10.1007\/s10618-018-0565-y","article-title":"Optimizing dynamic time warping\u2019s window width for time series data mining applications","volume":"32","author":"Anh Dau","year":"2018","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.neucom.2022.10.033_b0045","doi-asserted-by":"crossref","unstructured":"I. Davidson and S.S. Ravi. Intractability and clustering with constraints. In ICML, pages 201\u2013208, 2007.","DOI":"10.1145\/1273496.1273522"},{"key":"10.1016\/j.neucom.2022.10.033_b0050","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.fss.2011.10.002","article-title":"Wavelets-based clustering of multivariate time series","volume":"193","author":"D\u2019Urso","year":"2012","journal-title":"Fuzzy Sets and Systems"},{"issue":"4","key":"10.1016\/j.neucom.2022.10.033_b0055","doi-asserted-by":"crossref","first-page":"917","DOI":"10.1007\/s10618-019-00619-1","article-title":"Deep learning for time series classification: a review","volume":"33","author":"Ismail Fawaz","year":"2019","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.neucom.2022.10.033_b0060","article-title":"Pattern reconciliation: A new approach involving constrained clustering of time series","volume":"145","author":"Hora Fontes","year":"2021","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.neucom.2022.10.033_b0065","doi-asserted-by":"crossref","unstructured":"Y. Jean Eudes Gbodjo, D. Ienco, and L. Leroux. Toward spatio-spectral analysis of sentinel-2 time series data for land cover mapping. IEEE GRSL, 17(2):307\u2013311, 2020.","DOI":"10.1109\/LGRS.2019.2917788"},{"key":"10.1016\/j.neucom.2022.10.033_b0070","doi-asserted-by":"crossref","unstructured":"D. Hallac, S. Vare, S.P. Boyd, and J. Leskovec. Toeplitz inverse covariance-based clustering of multivariate time series data. In KDD, pages 215\u2013223, 2017.","DOI":"10.24963\/ijcai.2018\/732"},{"issue":"1","key":"10.1016\/j.neucom.2022.10.033_b0075","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01908075","article-title":"Comparing partitions","volume":"2","author":"Hubert","year":"1985","journal-title":"Journal of Classification"},{"key":"10.1016\/j.neucom.2022.10.033_b0080","doi-asserted-by":"crossref","unstructured":"D. Ienco and R. Interdonato. Deep multivariate time series embedding clustering via attentive-gated autoencoder. In PAKDD, pages 318\u2013329, 2020.","DOI":"10.1007\/978-3-030-47426-3_25"},{"key":"10.1016\/j.neucom.2022.10.033_b0085","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.neunet.2019.04.014","article-title":"Multivariate lstm-fcns for time series classification","volume":"116","author":"Karim","year":"2019","journal-title":"Neural Networks"},{"journal-title":"CoRR abs\/1412.6980","article-title":"Adam: A method for stochastic optimization","year":"2014","author":"Kingma","key":"10.1016\/j.neucom.2022.10.033_b0090"},{"issue":"6","key":"10.1016\/j.neucom.2022.10.033_b0095","doi-asserted-by":"crossref","first-page":"1663","DOI":"10.1007\/s10618-018-0573-y","article-title":"Constrained distance based clustering for time-series: a comparative and experimental study","volume":"32","author":"Lampert","year":"2018","journal-title":"Data Min. Knowl. Discov."},{"issue":"11","key":"10.1016\/j.neucom.2022.10.033_b0100","doi-asserted-by":"crossref","first-page":"4606","DOI":"10.1109\/JSTARS.2019.2950406","article-title":"Constrained distance-based clustering for satellite image time-series","volume":"12","author":"Lampert","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens."},{"issue":"11","key":"10.1016\/j.neucom.2022.10.033_b0105","doi-asserted-by":"crossref","first-page":"1857","DOI":"10.1016\/j.patcog.2005.01.025","article-title":"Clustering of time series data - a survey","volume":"38","author":"Warren Liao","year":"2005","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.neucom.2022.10.033_b0110","doi-asserted-by":"crossref","first-page":"26102","DOI":"10.1109\/ACCESS.2019.2900371","article-title":"An ensemble model based on adaptive noise reducer and over-fitting prevention LSTM for multivariate time series forecasting","volume":"7","author":"Liu","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2022.10.033_b0115","unstructured":"S. Sundar Rangapuram and M. Hein. Constrained 1-spectral clustering. In AISTATS, volume 22 of JMLR Proceedings, pages 1143\u20131151, 2012."},{"issue":"8\u20139","key":"10.1016\/j.neucom.2022.10.033_b0120","doi-asserted-by":"crossref","first-page":"1421","DOI":"10.1007\/s10994-019-05815-0","article-title":"Temporal pattern attention for multivariate time series forecasting","volume":"108","author":"Shih","year":"2019","journal-title":"Machine Learning"},{"key":"10.1016\/j.neucom.2022.10.033_b0125","first-page":"583","article-title":"Cluster ensembles \u2014 A knowledge reuse framework for combining multiple partitions","volume":"3","author":"Strehl","year":"2002","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2022.10.033_b0130","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.neucom.2018.07.092","article-title":"Mv-kwnn: A novel multivariate and multi-output weighted nearest neighbours algorithm for big data time series forecasting","volume":"353","author":"Talavera-Llames","year":"2019","journal-title":"Neurocomputing"},{"year":"2005","series-title":"Introduction to Data Mining","author":"Tan","key":"10.1016\/j.neucom.2022.10.033_b0135"},{"issue":"118","key":"10.1016\/j.neucom.2022.10.033_b0140","first-page":"1","article-title":"Tslearn, a machine learning toolkit for time series data","volume":"21","author":"Tavenard","year":"2020","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2022.10.033_b0145","series-title":"ICASSP","first-page":"3257","article-title":"Recurrent deep divergence-based clustering for simultaneous feature learning and clustering of variable length time series","author":"Trosten","year":"2019"},{"key":"10.1016\/j.neucom.2022.10.033_b0150","doi-asserted-by":"crossref","unstructured":"P. Tzirakis, M.A. Nicolaou, B.W. Schuller, and S. Zafeiriou. Time-series clustering with jointly learning deep representations, clusters and temporal boundaries. In ICAFGR, pages 1\u20135, 2019.","DOI":"10.1109\/FG.2019.8756618"},{"key":"10.1016\/j.neucom.2022.10.033_b0155","doi-asserted-by":"crossref","unstructured":"T. van Craenendonck, S. Dumancic, E. Van Wolputte, and H. Blockeel. COBRAS: interactive clustering with pairwise queries. In IDA, pages 353\u2013366, 2018.","DOI":"10.1007\/978-3-030-01768-2_29"},{"key":"10.1016\/j.neucom.2022.10.033_b0160","doi-asserted-by":"crossref","unstructured":"T. van Craenendonck, W. Meert, S. Dumancic, and H. Blockeel. COBRASTS: A new approach to semi-supervised clustering of time series. In Discovery Science, pages 179\u2013193, 2018.","DOI":"10.1007\/978-3-030-01771-2_12"},{"key":"10.1016\/j.neucom.2022.10.033_b0165","first-page":"2579","article-title":"Visualizing Data Using t-SNE","volume":"9","author":"van der Maaten","year":"2008","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2022.10.033_b0170","series-title":"ICML","first-page":"577","article-title":"Constrained k-means clustering with background knowledge","author":"Wagstaff","year":"2001"},{"key":"10.1016\/j.neucom.2022.10.033_b0175","doi-asserted-by":"crossref","unstructured":"E.H.C. Wu and P.L.H. Yu. Independent component analysis for clustering multivariate time series data. In ADMA, pages 474\u2013482, 2005.","DOI":"10.1007\/11527503_57"},{"key":"10.1016\/j.neucom.2022.10.033_b0180","doi-asserted-by":"crossref","first-page":"139580","DOI":"10.1109\/ACCESS.2019.2943474","article-title":"Learning kullback-leibler divergence-based gaussian model for multivariate time series classification","volume":"7","author":"Wu","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2022.10.033_b0185","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.neucom.2020.11.001","article-title":"Algenet: Adaptive log-euclidean gaussian embedding network for time series forecasting","volume":"423","author":"Xie","year":"2021","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2022.10.033_b0190","doi-asserted-by":"crossref","first-page":"593","DOI":"10.1007\/s10618-020-00734-4","article-title":"A framework for deep constrained clustering","volume":"35","author":"Zhang","year":"2021","journal-title":"Data Min. Knowl. Discov."},{"key":"10.1016\/j.neucom.2022.10.033_b0195","doi-asserted-by":"crossref","unstructured":"X. Zhang, Y. Gao, J. Lin, and C.-T. Lu. Tapnet: Multivariate time series classification with attentional prototypical network. In AAAI, pages 6845\u20136852, 2020.","DOI":"10.1609\/aaai.v34i04.6165"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122201308X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092523122201308X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T05:15:14Z","timestamp":1728191714000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092523122201308X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":39,"alternative-id":["S092523122201308X"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.10.033","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep semi-supervised clustering for multi-variate time-series","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.10.033","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}