{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,5]],"date-time":"2024-10-05T00:40:07Z","timestamp":1728088807609},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.neucom.2022.09.156","type":"journal-article","created":{"date-parts":[[2022,9,30]],"date-time":"2022-09-30T03:54:18Z","timestamp":1664510058000},"page":"229-242","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Robust projection twin extreme learning machines with cappedL<\/mml:mi><\/mml:mrow>1<\/mml:mn><\/mml:mrow><\/mml:msub><\/mml:mrow><\/mml:math>-norm distance metric"],"prefix":"10.1016","volume":"517","author":[{"given":"Yang","family":"Yang","sequence":"first","affiliation":[]},{"given":"Zhenxia","family":"Xue","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Xia","family":"Chang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.09.156_b0005","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"year":"2013","series-title":"Support Vector Machines: Theory","author":"Deng","key":"10.1016\/j.neucom.2022.09.156_b0010"},{"issue":"1","key":"10.1016\/j.neucom.2022.09.156_b0015","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1109\/TPAMI.2006.17","article-title":"Multisurface proximal support vector machine classification via generalized eigenvalues","volume":"28","author":"Mangasarian","year":"2006","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.neucom.2022.09.156_b0020","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1109\/TPAMI.2007.1068","article-title":"Chandra, Twin support vector machines for pattern classification","volume":"29","author":"Jayadeva","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.neucom.2022.09.156_b0025","doi-asserted-by":"crossref","first-page":"975","DOI":"10.1007\/s00521-013-1524-6","article-title":"An overview on nonparallel hyperplane support vector machine algorithms","volume":"25","author":"Ding","year":"2014","journal-title":"Neural Comput. Appl."},{"issue":"4","key":"10.1016\/j.neucom.2022.09.156_b0030","doi-asserted-by":"crossref","first-page":"7535","DOI":"10.1016\/j.eswa.2008.09.066","article-title":"Least squares twin support vector machines for pattern classification","volume":"36","author":"Kumar","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.neucom.2022.09.156_b0035","doi-asserted-by":"crossref","first-page":"962","DOI":"10.1109\/TNN.2011.2130540","article-title":"Improvements on twin support vector machines","volume":"22","author":"Shao","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.neucom.2022.09.156_b0040","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.patcog.2015.10.008","article-title":"MLTSVM: a novel twin support vector machine to multi-label learning","volume":"52","author":"Chen","year":"2016","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2022.09.156_b0045","doi-asserted-by":"crossref","unstructured":"G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of Internation Joint Conference on Neural Networks (IJCNN2004), vol. 2, Budapest, Hungary, 25\u201329 July, 2004, pp. 985\u2013990.","DOI":"10.1109\/IJCNN.2004.1380068"},{"key":"10.1016\/j.neucom.2022.09.156_b0050","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: theory and application","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.156_b0055","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1007\/978-3-540-89524-4_23","article-title":"Extreme support vector machine classifier","volume":"5012","author":"Liu","year":"2008","journal-title":"Lect. Notes Comput. Sci."},{"key":"10.1016\/j.neucom.2022.09.156_b0060","unstructured":"B. Frenay, M. Verleysen, Using SVMs with randomised feature spaces: an extreme learning apporach, in: Proceeding of The 18th European Symposium on Artification Neural Networks (ESANN), Bruges, Belgium, 28\u201330 April, 2010, pp. 315\u2013320."},{"key":"10.1016\/j.neucom.2022.09.156_b0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.conengprac.2022.105064","article-title":"Extreme-learning-machine-based robust integral terminal sliding mode control of bicycle robot","volume":"121","author":"Chen","year":"2022","journal-title":"Control Eng. Practice"},{"key":"10.1016\/j.neucom.2022.09.156_b0070","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.apm.2022.01.023","article-title":"Novel hybrid extreme learning machine and multi-objective optimization algorithm for air pollution prediction","volume":"106","author":"Bai","year":"2022","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.neucom.2022.09.156_b0075","doi-asserted-by":"crossref","DOI":"10.1016\/j.rsma.2022.102332","article-title":"Estimation of rip density on intermediate beaches using an extreme learning machine model","volume":"52","author":"Valipour","year":"2022","journal-title":"Regional Stud. Mar. Sci."},{"key":"10.1016\/j.neucom.2022.09.156_b0080","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.neucom.2017.04.036","article-title":"Twin extreme learning machines for pattern classification","volume":"260","author":"Wan","year":"2017","journal-title":"Neurocomputing"},{"issue":"13","key":"10.1016\/j.neucom.2022.09.156_b0085","doi-asserted-by":"crossref","first-page":"2006","DOI":"10.1016\/j.patrec.2010.06.005","article-title":"Multi-weight vector projection support vector machines","volume":"31","author":"Ye","year":"2010","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.neucom.2022.09.156_b0090","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.patrec.2014.02.006","article-title":"Enhanced multi-weight vector projection support vector machine","volume":"42","author":"Ye","year":"2014","journal-title":"Pattern Recognit. Lett."},{"year":"1990","series-title":"Introduction to Statistical Pattern Recognition","author":"Fukunaga","key":"10.1016\/j.neucom.2022.09.156_b0095"},{"issue":"10\u201311","key":"10.1016\/j.neucom.2022.09.156_b0100","doi-asserted-by":"crossref","first-page":"2643","DOI":"10.1016\/j.patcog.2011.03.001","article-title":"Recursive projection twin support vector machine via within-class variance minimization","volume":"44","author":"Chen","year":"2011","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.neucom.2022.09.156_b0105","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.knosys.2012.08.001","article-title":"A regularization for the projection twin support vector machine","volume":"37","author":"Shao","year":"2013","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.neucom.2022.09.156_b0110","doi-asserted-by":"crossref","unstructured":"X. Peng, D. Xu, L. Kong, D. Chen, L1-Norm loss based twin support vector machine for data recognition, Inf Sci (Ny) (340\u2013341) (2016) 86\u2013103.","DOI":"10.1016\/j.ins.2016.01.023"},{"issue":"6","key":"10.1016\/j.neucom.2022.09.156_b0115","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1109\/TCYB.2013.2273355","article-title":"Fisher discriminant analysis with L1-norm","volume":"44","author":"Wang","year":"2014","journal-title":"IEEE Trans. Cybern."},{"issue":"9","key":"10.1016\/j.neucom.2022.09.156_b0120","doi-asserted-by":"crossref","first-page":"1672","DOI":"10.1109\/TPAMI.2008.114","article-title":"Principal component analysis based on L1-norm maximization","volume":"30","author":"Kwak","year":"2008","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.neucom.2022.09.156_b0125","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1016\/j.patcog.2011.07.009","article-title":"Improve robustness of sparse PCA by L1-norm maximization","volume":"45","author":"Meng","year":"2012","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.neucom.2022.09.156_b0130","first-page":"1","article-title":"L1-norm distance minimization-based fast robust twin support vector k-plane clustering","author":"Ye","year":"2017","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"issue":"FEB.5","key":"10.1016\/j.neucom.2022.09.156_b0135","first-page":"1","article-title":"Robust image recognition by L1-norm twin-projection support vector machine","volume":"223","author":"Gu","year":"2016","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.neucom.2022.09.156_b0140","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1109\/TCSVT.2016.2596158","article-title":"L1-norm distance linear discriminant analysis based on an effective iterative algorithm","volume":"28","author":"Ye","year":"2018","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"10.1016\/j.neucom.2022.09.156_b0145","first-page":"3590","article-title":"Robust dictionary learning with capped L1-norm","author":"Jiang","year":"2015","journal-title":"International Conference on Artificial Intelligence, AAAI Press"},{"key":"10.1016\/j.neucom.2022.09.156_b0150","series-title":"Proceedings of the 26th International Joint Conference on Artificial Intelligence","first-page":"2557","article-title":"Joint capped norms minimization for robust matrix recovery","author":"Nie","year":"2017"},{"key":"10.1016\/j.neucom.2022.09.156_b0155","unstructured":"M.J. Wu, J.X. Liu, Y.L. Gao, X.Z. Kong, C.M. Feng, Feature selection and clustering via robust graph-laplacian PCA based on capped L1-norm, in: IEEE International Conference on Bioinformatics and Biomedicine, 2017, IEEE."},{"key":"10.1016\/j.neucom.2022.09.156_b0160","first-page":"1813","article-title":"Efficient and robust feature selection via joint L2;1-norms minimization","author":"Nie","year":"2010","journal-title":"International Conference on Neural Information Processing Systems"},{"key":"10.1016\/j.neucom.2022.09.156_b0165","doi-asserted-by":"crossref","unstructured":"Chunyan Wang, Qiaolin Ye, Peng Luo, Ning Ye, Fu. Liyong, Robust capped L1-norm twin support vector machine, Neural Networks, 114 (2019) 47\u201359.","DOI":"10.1016\/j.neunet.2019.01.016"},{"key":"10.1016\/j.neucom.2022.09.156_b0170","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.ins.2021.06.003","article-title":"R-CTSVM+: Robust capped L1-norm twin support vector machine with privileged information","volume":"574","author":"Li","year":"2021","journal-title":"Inf. Sci."},{"issue":"OCT.28","key":"10.1016\/j.neucom.2022.09.156_b0175","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.neucom.2020.06.053","article-title":"Capped L1-norm distance metric-based fast robust twin bounded support vector machine","volume":"412","author":"Ma","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.156_b0180","doi-asserted-by":"crossref","first-page":"434","DOI":"10.1016\/j.patcog.2017.09.035","article-title":"Least squares twin bounded support vector machines based on L1-norm distance metric for classification","volume":"74","author":"Yan","year":"2018","journal-title":"Pattern Recogn."},{"issue":"11","key":"10.1016\/j.neucom.2022.09.156_b0185","doi-asserted-by":"crossref","first-page":"1738","DOI":"10.1109\/TNNLS.2012.2212721","article-title":"Discriminative least squares regression for multiclass classification and feature selection","volume":"23","author":"Xiang","year":"2012","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.neucom.2022.09.156_b0190","unstructured":"F. Nie, Y. Huang, X. Wang, H. Huang, New primal SVM solver with linear computational cost for big data classifications, in: International Conference on Machine Learning, 2014, (II-505)."},{"issue":"11","key":"10.1016\/j.neucom.2022.09.156_b0195","doi-asserted-by":"crossref","first-page":"3733","DOI":"10.1109\/TCYB.2016.2578642","article-title":"Rotational Invariant Dimensionality Reduction Algorithms","volume":"47","author":"Lai","year":"2017","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.neucom.2022.09.156_b0200","unstructured":"Blake C L, Merz C J. UCI Repository of machine learning databases [http:\/\/www. ics. uci. edu\/ mlearn\/ MLRepository. html]. Irvine, CA: University of California [J]. Department of Information and Computer Science, 1998, 55."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222012486?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222012486?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,5]],"date-time":"2024-10-05T00:00:07Z","timestamp":1728086407000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222012486"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":40,"alternative-id":["S0925231222012486"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.156","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust projection twin extreme learning machines with capped -norm distance metric","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.156","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}