{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T15:13:32Z","timestamp":1726499612428},"reference-count":180,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.neucom.2022.09.135","type":"journal-article","created":{"date-parts":[[2022,9,28]],"date-time":"2022-09-28T16:12:23Z","timestamp":1664381543000},"page":"351-371","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":41,"special_numbering":"C","title":["A comprehensive overview of Deepfake: Generation, detection, datasets, and opportunities"],"prefix":"10.1016","volume":"513","author":[{"given":"Jia Wen","family":"Seow","sequence":"first","affiliation":[]},{"given":"Mei Kuan","family":"Lim","sequence":"additional","affiliation":[]},{"given":"Rapha\u00ebl C.W.","family":"Phan","sequence":"additional","affiliation":[]},{"given":"Joseph K.","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.09.135_b0005","unstructured":"M. Albahar, J. Almalki, Deepfakes: Threats and countermeasures systematic review, Journal of Theoretical and Applied Information Technology 97."},{"key":"10.1016\/j.neucom.2022.09.135_b0010","doi-asserted-by":"crossref","unstructured":"C. Vaccari, A. Chadwick, Deepfakes and disinformation: Exploring the impact of synthetic political video on deception, uncertainty, and trust in news, Social Media + Society 6 (1) (2020) 2056305120903408. doi:10.1177\/2056305120903408.","DOI":"10.1177\/2056305120903408"},{"key":"10.1016\/j.neucom.2022.09.135_b0015","unstructured":"J. Vincent, Watch jordan peele use ai to make barack obama deliver a psa about fake news, retrieved Oct 19, 2019 from https:\/\/www.theverge.com\/tldr\/2018\/4\/17\/17247334\/ai-fake-news-video-barack-obama-jordan-peele-buzzfeed (2018)."},{"key":"10.1016\/j.neucom.2022.09.135_b0020","first-page":"1753","article-title":"Deep fakes: A looming challenge for privacy, democracy, and national security","volume":"107","author":"Chesney","year":"2018","journal-title":"California Law Review"},{"key":"10.1016\/j.neucom.2022.09.135_b0025","unstructured":"D. Itzkoff, How \u2018rogue one\u2019 brought back familiar faces, retrieved Dec 18, 2020 from https:\/\/www.nytimes.com\/2016\/12\/27\/movies\/how-rogue-one-brought-back-grand-moff-tarkin.html%20[https:\/\/perma.cc\/F53C-TDYV (2016)."},{"key":"10.1016\/j.neucom.2022.09.135_b0030","unstructured":"Medium, Ai-powered digital people, retrieved Dec 18, 2020 from https:\/\/medium.com\/syncedreview\/ai-powered-digital-people-c0a94b7f0e8b (2020)."},{"key":"10.1016\/j.neucom.2022.09.135_b0035","series-title":"Advances in Artificial Intelligence, Software and Systems Engineering","first-page":"235","article-title":"Deepfakes for the good: A beneficial application of contentious artificial intelligence technology","author":"Caporusso","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0040","unstructured":"B. Dolhansky, R. Howes, B. Pflaum, N. Baram, C. Canton Ferrer, The Deepfake Detection Challenge (DFDC) Preview Dataset, arXiv e-prints (2019) arXiv:1910.08854."},{"issue":"1","key":"10.1016\/j.neucom.2022.09.135_b0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3425780","article-title":"The creation and detection of deepfakes: A survey","volume":"54","author":"Mirsky","year":"2021","journal-title":"ACM Computing Surveys (CSUR)"},{"issue":"5","key":"10.1016\/j.neucom.2022.09.135_b0050","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1109\/JSTSP.2020.3002101","article-title":"Media forensics and deepfakes: an overview","volume":"14","author":"Verdoliva","year":"2020","journal-title":"IEEE Journal of Selected Topics in Signal Processing"},{"key":"10.1016\/j.neucom.2022.09.135_b0055","unstructured":"P. Korshunov, S. Marcel, DeepFakes: a New Threat to Face Recognition? Assessment and Detection, arXiv e-prints (2018) arXiv:1812.08685."},{"key":"10.1016\/j.neucom.2022.09.135_b0060","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.inffus.2020.06.014","article-title":"Deepfakes and beyond: A survey of face manipulation and fake detection","volume":"64","author":"Tolosana","year":"2020","journal-title":"Information Fusion"},{"key":"10.1016\/j.neucom.2022.09.135_b0065","series-title":"2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET)","first-page":"67","article-title":"Deep learning in face synthesis: A survey on deepfakes","author":"Zhang","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0070","unstructured":"T.T. Nguyen, C.M. Nguyen, D. Tien Nguyen, D. Thanh Nguyen, S. Nahavandi, Deep Learning for Deepfakes Creation and Detection: A Survey, arXiv e-prints (2019) arXiv:1909.11573."},{"key":"10.1016\/j.neucom.2022.09.135_b0075","series-title":"2019 International Conference on Automation, Computational and Technology Management (ICACTM)","first-page":"262","article-title":"Detection of digital image forgery using fast fourier transform and local features","author":"Kanwal","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0080","unstructured":"A. van den Oord, Y. Li, O. Vinyals, Representation Learning with Contrastive Predictive Coding, arXiv e-prints (2018) arXiv:1807.03748."},{"issue":"4","key":"10.1016\/j.neucom.2022.09.135_b0085","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1561\/2200000056","article-title":"An introduction to variational autoencoders","volume":"12","author":"Kingma","year":"2019","journal-title":"Foundations and Trends\u00f6 in Machine Learning"},{"issue":"11","key":"10.1016\/j.neucom.2022.09.135_b0090","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1145\/3422622","article-title":"Generative adversarial networks","volume":"63","author":"Goodfellow","year":"2020","journal-title":"Communications of the ACM"},{"key":"10.1016\/j.neucom.2022.09.135_b0095","first-page":"1747","author":"Van Oord","year":"2016","journal-title":"Pixel recurrent neural networks"},{"key":"10.1016\/j.neucom.2022.09.135_b0100","unstructured":"A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, K. Kavukcuoglu, Conditional image generation with pixelcnn decoders, Curran Associates Inc., 2016, p. 4797\u20134805."},{"key":"10.1016\/j.neucom.2022.09.135_b0105","doi-asserted-by":"crossref","first-page":"468","DOI":"10.1016\/j.neucom.2020.06.067","article-title":"Adversarial-learning-based image-to-image transformation: A survey","volume":"411","author":"Chen","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.135_b0110","unstructured":"T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of GANs for improved quality, stability, and variation, in: International Conference on Learning Representations, 2018."},{"key":"10.1016\/j.neucom.2022.09.135_b0115","series-title":"2018 9th Conference on Artificial Intelligence and Robotics and 2nd Asia-Pacific International Symposium","first-page":"31","article-title":"Rdcgan: Unsupervised representation learning with regularized deep convolutional generative adversarial networks","author":"Mehralian","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0120","first-page":"214","article-title":"Wasserstein generative adversarial networks","author":"Arjovsky","year":"2017","journal-title":"International conference on machine learning"},{"key":"10.1016\/j.neucom.2022.09.135_b0125","doi-asserted-by":"crossref","unstructured":"J. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2242\u20132251.","DOI":"10.1109\/ICCV.2017.244"},{"key":"10.1016\/j.neucom.2022.09.135_b0130","first-page":"8789","article-title":"Stargan: Unified generative adversarial networks for multi-domain image-to-image translation","author":"Choi","year":"2018","journal-title":"IEEE"},{"key":"10.1016\/j.neucom.2022.09.135_b0135","doi-asserted-by":"crossref","unstructured":"Y. Jo, J. Park, Sc-fegan: Face editing generative adversarial network with user\u2019s sketch and color, in: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), 2019, pp. 1745\u20131753.","DOI":"10.1109\/ICCV.2019.00183"},{"key":"10.1016\/j.neucom.2022.09.135_b0140","doi-asserted-by":"crossref","unstructured":"Y. Nirkin, Y. Keller, T. Hassner, Fsgan: Subject agnostic face swapping and reenactment (2019) 7184\u20137193.","DOI":"10.1109\/ICCV.2019.00728"},{"key":"10.1016\/j.neucom.2022.09.135_b0145","series-title":"Proceedings of the 26th ACM International Conference on Multimedia","first-page":"645","article-title":"Beautygan: Instance-level facial makeup transfer with deep generative adversarial network","author":"Li","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0150","unstructured":"Changsha Shenguronghe Network Technology Co.,Ltd, Zao (2019). https:\/\/zaodownload.com\/"},{"key":"10.1016\/j.neucom.2022.09.135_b0155","unstructured":"FaceApp Inc, Faceapp (2016). https:\/\/www.faceapp.com\/."},{"issue":"2","key":"10.1016\/j.neucom.2022.09.135_b0160","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TPAMI.2015.2439281","article-title":"Image super-resolution using deep convolutional networks","volume":"38","author":"Dong","year":"2015","journal-title":"IEEE transactions on pattern analysis and machine intelligence"},{"key":"10.1016\/j.neucom.2022.09.135_b0165","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/j.neucom.2020.03.107","article-title":"Facial image synthesis and super-resolution with stacked generative adversarial network","volume":"402","author":"He","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.135_b0170","series-title":"International Conference on Image and Graphics","first-page":"97","article-title":"Unsupervised representation learning with deep convolutional neural network for remote sensing images","author":"Yu","year":"2017"},{"key":"10.1016\/j.neucom.2022.09.135_b0175","unstructured":"N. Corporation, Nvidia, retrieved Jan 2, 2021 from https:\/\/www.nvidia.com\/en-us\/ (2020)."},{"key":"10.1016\/j.neucom.2022.09.135_b0180","doi-asserted-by":"crossref","unstructured":"T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial networks, in: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4396\u20134405.","DOI":"10.1109\/CVPR.2019.00453"},{"key":"10.1016\/j.neucom.2022.09.135_b0185","doi-asserted-by":"crossref","unstructured":"G.-Y. Hao, H.-X. Yu, W.-S. Zheng, Mixgan: Learning concepts from different domains for mixture generation, in: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization, 2018, pp. 2212\u20132219. doi:10.24963\/ijcai.2018\/306.","DOI":"10.24963\/ijcai.2018\/306"},{"key":"10.1016\/j.neucom.2022.09.135_b0190","doi-asserted-by":"crossref","unstructured":"X. Huang, S. Belongie, Arbitrary style transfer in real-time with adaptive instance normalization, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 1510\u20131519. doi:10.1109\/ICCV.2017.167.","DOI":"10.1109\/ICCV.2017.167"},{"key":"10.1016\/j.neucom.2022.09.135_b0195","doi-asserted-by":"crossref","unstructured":"X. Huang, M.-Y. Liu, S. Belongie, J. Kautz, Multimodal unsupervised image-to-image translation, in: Computer Vision ECCV, Springer International Publishing, 2018, pp. 179\u2013196.","DOI":"10.1007\/978-3-030-01219-9_11"},{"key":"10.1016\/j.neucom.2022.09.135_b0200","doi-asserted-by":"crossref","unstructured":"T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, T. Aila, Analyzing and improving the image quality of stylegan (2020) 8110\u20138119.","DOI":"10.1109\/CVPR42600.2020.00813"},{"issue":"5","key":"10.1016\/j.neucom.2022.09.135_b0205","doi-asserted-by":"crossref","first-page":"1038","DOI":"10.1109\/JSTSP.2020.3007250","article-title":"Ganprintr: Improved fakes and evaluation of the state of the art in face manipulation detection","volume":"14","author":"Neves","year":"2020","journal-title":"IEEE Journal of Selected Topics in Signal Processing"},{"key":"10.1016\/j.neucom.2022.09.135_b0210","doi-asserted-by":"crossref","unstructured":"H. Dang, F. Liu, J. Stehouwer, X. Liu, A.K. Jain, On the detection of digital face manipulation, in: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 5780\u20135789. doi:10.1109\/CVPR42600.2020.00582.","DOI":"10.1109\/CVPR42600.2020.00582"},{"key":"10.1016\/j.neucom.2022.09.135_b0215","doi-asserted-by":"crossref","unstructured":"V. Blanz, K. Scherbaum, T. Vetter, H.-P. Seidel, Exchanging faces in images, in: Computer Graphics Forum, Vol. 23, Wiley Online Library, 2004, pp. 669\u2013676.","DOI":"10.1111\/j.1467-8659.2004.00799.x"},{"issue":"6","key":"10.1016\/j.neucom.2022.09.135_b0220","doi-asserted-by":"crossref","DOI":"10.1145\/2816795.2818056","article-title":"Real-time expression transfer for facial reenactment","volume":"34","author":"Thies","year":"2015","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.neucom.2022.09.135_b0225","series-title":"ACM SIGGRAPH 2016 Emerging Technologies","article-title":"Demo of face2face: Real-time face capture and reenactment of rgb videos","author":"Thies","year":"2016"},{"key":"10.1016\/j.neucom.2022.09.135_b0230","doi-asserted-by":"crossref","unstructured":"J. Thies, M. Zollh\u00f6fer, M. Nie\u00dfner, Deferred neural rendering: Image synthesis using neural textures, ACM Trans. Graph. 38 (4). doi:10.1145\/3306346.3323035.","DOI":"10.1145\/3306346.3323035"},{"key":"10.1016\/j.neucom.2022.09.135_b0235","doi-asserted-by":"crossref","unstructured":"O. Fried, A. Tewari, M. Zollh\u00f6fer, A. Finkelstein, E. Shechtman, D.B. Goldman, K. Genova, Z. Jin, C. Theobalt, M. Agrawala, Text-based editing of talking-head video, ACM Trans. Graph. 38 (4). doi:10.1145\/3306346.3323028.","DOI":"10.1145\/3306346.3323028"},{"key":"10.1016\/j.neucom.2022.09.135_b0240","doi-asserted-by":"crossref","unstructured":"S. Suwajanakorn, S.M. Seitz, I. Kemelmacher-Shlizerman, Synthesizing obama: learning lip sync from audio, ACM Trans. Graph. 36 (2017) 95:1\u201395:13.","DOI":"10.1145\/3072959.3073640"},{"key":"10.1016\/j.neucom.2022.09.135_b0245","unstructured":"R. Kumar, J. Sotelo, K. Kumar, A. de Brebisson, Y. Bengio, ObamaNet: Photo-realistic lip-sync from text, arXiv e-prints (2017) arXiv:1801.01442."},{"key":"10.1016\/j.neucom.2022.09.135_b0250","doi-asserted-by":"crossref","unstructured":"Y. Song, J. Zhu, D. Li, A. Wang, H. Qi, Talking face generation by conditional recurrent adversarial network, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, International Joint Conferences on Artificial Intelligence Organization, 2019, pp. 919\u2013925. doi:10.24963\/ijcai.2019\/129.","DOI":"10.24963\/ijcai.2019\/129"},{"key":"10.1016\/j.neucom.2022.09.135_b0255","first-page":"119","article-title":"Recycle-gan: Unsupervised video retargeting","author":"Bansal","year":"2018","journal-title":"ECCV"},{"key":"10.1016\/j.neucom.2022.09.135_b0260","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","article-title":"Reenactgan: Learning to reenact faces via boundary transfer","author":"Wu","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0265","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV)","article-title":"Icface: Interpretable and controllable face reenactment using gans","author":"Tripathy","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0270","doi-asserted-by":"crossref","first-page":"2960","DOI":"10.1109\/TIFS.2020.2980792","article-title":"Facial age and expression synthesis using ordinal ranking adversarial networks","volume":"15","author":"Sun","year":"2020","journal-title":"IEEE Transactions on Information Forensics and Security"},{"key":"10.1016\/j.neucom.2022.09.135_b0275","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Faceid-gan: Learning a symmetry three-player gan for identity-preserving face synthesis","author":"Shen","year":"2018"},{"issue":"12","key":"10.1016\/j.neucom.2022.09.135_b0280","doi-asserted-by":"crossref","first-page":"3007","DOI":"10.1109\/TPAMI.2018.2868350","article-title":"Representation learning by rotating your faces","volume":"41","author":"Tran","year":"2019","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2022.09.135_b0285","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"9459","article-title":"Few-shot adversarial learning of realistic neural talking head models","author":"Zakharov","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0290","unstructured":"J. Zhang, X. Zeng, Y. Pan, Y. Liu, Y. Ding, C. Fan, Faceswapnet: Landmark guided many-to-many face reenactment, arXiv preprint arXiv:1905.11805 2."},{"key":"10.1016\/j.neucom.2022.09.135_b0295","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV)","article-title":"Imaginator: Conditional spatio-temporal gan for video generation","author":"Wang","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0300","doi-asserted-by":"crossref","first-page":"2218","DOI":"10.1109\/TIFS.2021.3050065","article-title":"High-fidelity face manipulation with extreme poses and expressions","volume":"16","author":"Fu","year":"2021","journal-title":"IEEE Transactions on Information Forensics and Security"},{"key":"10.1016\/j.neucom.2022.09.135_b0305","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Deformable gans for pose-based human image generation","author":"Siarohin","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0310","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","article-title":"Dense pose transfer","author":"Neverova","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0315","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Synthesizing images of humans in unseen poses","author":"Balakrishnan","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0320","doi-asserted-by":"crossref","unstructured":"S. Tulyakov, M.-Y. Liu, X. Yang, J. Kautz, Mocogan: Decomposing motion and content for video generation (2018) 1526\u20131535.","DOI":"10.1109\/CVPR.2018.00165"},{"key":"10.1016\/j.neucom.2022.09.135_b0325","doi-asserted-by":"crossref","unstructured":"K. Aberman, M. Shi, J. Liao, D. Lischinski, B. Chen, D. Cohen-Or, Deep video-based performance cloning, in: Computer Graphics Forum, Vol. 38, Wiley Online Library, 2019, pp. 219\u2013233.","DOI":"10.1111\/cgf.13632"},{"key":"10.1016\/j.neucom.2022.09.135_b0330","doi-asserted-by":"crossref","unstructured":"H. Kim, P. Garrido, A. Tewari, W. Xu, J. Thies, M. Niessner, P. P\u00e9rez, C. Richardt, M. Zollh\u00f6fer, C. Theobalt, Deep video portraits, ACM Trans. Graph. 37 (4). doi:10.1145\/3197517.3201283.","DOI":"10.1145\/3197517.3201283"},{"key":"10.1016\/j.neucom.2022.09.135_b0335","doi-asserted-by":"crossref","unstructured":"L. Liu, W. Xu, M. Zollh\u00f6fer, H. Kim, F. Bernard, M. Habermann, W. Wang, C. Theobalt, Neural rendering and reenactment of human actor videos, ACM Trans. Graph. 38 (5). doi:10.1145\/3333002.","DOI":"10.1145\/3333002"},{"key":"10.1016\/j.neucom.2022.09.135_b0340","unstructured":"T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao, J. Kautz, B. Catanzaro, Video-to-video synthesis, Curran Associates Inc., 2018, p. 1152\u20131164."},{"key":"10.1016\/j.neucom.2022.09.135_b0345","series-title":"Advances in Neural Information Processing Systems (NeurIPS)","article-title":"Few-shot video-to-video synthesis","author":"Wang","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0350","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"5933","article-title":"Everybody dance now","author":"Chan","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0355","series-title":"2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct)","first-page":"200","article-title":"Video synthesis of human upper body with realistic face","author":"Liu","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0360","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV) Workshops","article-title":"Dance dance generation: Motion transfer for internet videos","author":"Zhou","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0365","doi-asserted-by":"crossref","first-page":"490","DOI":"10.1016\/j.neucom.2020.09.004","article-title":"Person image synthesis through siamese generative adversarial network","volume":"417","author":"Chen","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.135_b0370","doi-asserted-by":"crossref","unstructured":"P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks (2017) 1125\u20131134.","DOI":"10.1109\/CVPR.2017.632"},{"key":"10.1016\/j.neucom.2022.09.135_b0375","unstructured":"G. Perarnau, J. van de Weijer, B. Raducanu, J.M. \u00c1lvarez, Invertible Conditional GANs for image editing, arXiv e-prints (2016) arXiv:1611.06355."},{"key":"10.1016\/j.neucom.2022.09.135_b0380","unstructured":"M. Li, W. Zuo, D. Zhang, Deep identity-aware transfer of facial attributes, arXiv e-prints (2016) arXiv:1610.05586."},{"key":"10.1016\/j.neucom.2022.09.135_b0385","doi-asserted-by":"crossref","unstructured":"W. Shen, R. Liu, Learning residual images for face attribute manipulation (2017) 4030\u20134038.","DOI":"10.1109\/CVPR.2017.135"},{"key":"10.1016\/j.neucom.2022.09.135_b0390","doi-asserted-by":"crossref","unstructured":"T. Xiao, J. Hong, J. Ma, Elegant: Exchanging latent encodings with gan for transferring multiple face attributes (2018) 168\u2013184.","DOI":"10.1007\/978-3-030-01249-6_11"},{"issue":"11","key":"10.1016\/j.neucom.2022.09.135_b0395","doi-asserted-by":"crossref","first-page":"5464","DOI":"10.1109\/TIP.2019.2916751","article-title":"Attgan: Facial attribute editing by only changing what you want","volume":"28","author":"He","year":"2019","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neucom.2022.09.135_b0400","doi-asserted-by":"crossref","unstructured":"M. Liu, Y. Ding, M. Xia, X. Liu, E. Ding, W. Zuo, S. Wen, Stgan: A unified selective transfer network for arbitrary image attribute editing, in: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 3668\u20133677. doi:10.1109\/CVPR.2019.00379.","DOI":"10.1109\/CVPR.2019.00379"},{"key":"10.1016\/j.neucom.2022.09.135_b0405","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.neucom.2021.02.054","article-title":"Urca-gan: Upsample residual channel-wise attention generative adversarial network for image-to-image translation","volume":"443","author":"Nie","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.135_b0410","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.neucom.2020.02.013","article-title":"Attributes guided facial image completion","volume":"392","author":"Guo","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.135_b0415","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1016\/j.neucom.2018.10.093","article-title":"Two birds with one stone: Transforming and generating facial images with iterative gan","volume":"396","author":"Ma","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.135_b0420","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.neucom.2019.07.085","article-title":"Photo-realistic face age progression\/regression using a single generative adversarial network","volume":"366","author":"Zeng","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.135_b0425","doi-asserted-by":"crossref","unstructured":"Y. Li, S. Liu, J. Yang, M. Yang, Generative face completion, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5892\u20135900. doi:10.1109\/CVPR.2017.624.","DOI":"10.1109\/CVPR.2017.624"},{"key":"10.1016\/j.neucom.2022.09.135_b0430","doi-asserted-by":"crossref","unstructured":"S. Xie, Z. Tu, Holistically-nested edge detection, in: 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1395\u20131403. doi:10.1109\/ICCV.2015.164.","DOI":"10.1109\/ICCV.2015.164"},{"key":"10.1016\/j.neucom.2022.09.135_b0435","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"7941","article-title":"Histogan: Controlling colors of gan-generated and real images via color histograms","author":"Afifi","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0440","series-title":"Proceedings of the IEEE International Conference on Computer Vision (ICCV)","article-title":"Fast face-swap using convolutional neural networks","author":"Korshunova","year":"2017"},{"key":"10.1016\/j.neucom.2022.09.135_b0445","series-title":"ACM SIGGRAPH 2018 Posters","article-title":"Rsgan: Face swapping and editing using face and hair representation in latent spaces","author":"Natsume","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0450","series-title":"Asian Conference on Computer Vision","first-page":"117","article-title":"Fsnet: An identity-aware generative model for image-based face swapping","author":"Natsume","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0455","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","article-title":"A hybrid model for identity obfuscation by face replacement","author":"Sun","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0460","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","article-title":"Advancing high fidelity identity swapping for forgery detection","author":"Li","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0465","unstructured":"C. Dfaker DepFA, DFaker, https:\/\/github.com\/dfaker\/df (2018)."},{"key":"10.1016\/j.neucom.2022.09.135_b0470","unstructured":"I. Perov, D. Gao, N. Chervoniy, K. Liu, S. Marangonda, C. Um\u00e9, M. Dpfks, C. Shift Facenheim, L. RP, J. Jiang, S. Zhang, P. Wu, B. Zhou, W. Zhang, DeepFaceLab: A simple, flexible and extensible face swapping framework, https:\/\/github.com\/iperov\/DeepFaceLab (2020)."},{"key":"10.1016\/j.neucom.2022.09.135_b0475","unstructured":"K. Torzdf, Andenixa, Face swap, https:\/\/github.com\/deepfakes\/faceswap (2020)."},{"key":"10.1016\/j.neucom.2022.09.135_b0480","unstructured":"F. Web, Deepfakes web, https:\/\/faceswapweb.com\/?locale=en (2020)."},{"key":"10.1016\/j.neucom.2022.09.135_b0485","unstructured":"Mahinetube, Mahinetube, https:\/\/www.machine.tube\/ (2020)."},{"key":"10.1016\/j.neucom.2022.09.135_b0490","unstructured":"NEOCORTEXT, INC., Reface app (2020). https:\/\/get.reface.app\/."},{"key":"10.1016\/j.neucom.2022.09.135_b0495","unstructured":"I. Avatarify, Avatarify: Ai face animator (2020). https:\/\/apps.apple.com\/us\/app\/avatarify-ai-face-animator\/id1512669147."},{"key":"10.1016\/j.neucom.2022.09.135_b0500","series-title":"The IEEE International Conference on Computer Vision (ICCV)","article-title":"Gao: Liquid warping gan: A unified framework for human motion imitation, appearance transfer and novel view synthesis","author":"Liu","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0505","unstructured":"Y. Didi, Jiggy: Magic dance gif maker (2020). https:\/\/apps.apple.com\/us\/app\/jiggy-magic-dance-gif-maker\/id1482608709"},{"key":"10.1016\/j.neucom.2022.09.135_b0510","doi-asserted-by":"crossref","unstructured":"Y. Zhang, L. Zheng, V.L.L. Thing, Automated face swapping and its detection, in: 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP), 2017, pp. 15\u201319.","DOI":"10.1109\/SIPROCESS.2017.8124497"},{"key":"10.1016\/j.neucom.2022.09.135_b0515","series-title":"2017 IEEE International Joint Conference on Biometrics (IJCB)","first-page":"659","article-title":"Swapped! digital face presentation attack detection via weighted local magnitude pattern","author":"Agarwal","year":"2017"},{"key":"10.1016\/j.neucom.2022.09.135_b0520","unstructured":"M. Koopman, A. Macarulla Rodriguez, Z. Geradts, Detection of deepfake video manipulation, 2018, pp. 133\u2013136."},{"key":"10.1016\/j.neucom.2022.09.135_b0525","unstructured":"R. Durall, M. Keuper, F.-J. Pfreundt, J. Keuper, Unmasking deepfakes with simple features, arXiv-eprints (2019) arXiv:1911.00686."},{"key":"10.1016\/j.neucom.2022.09.135_b0530","doi-asserted-by":"crossref","unstructured":"F. Marra, D. Gragnaniello, L. Verdoliva, G. Poggi, Do gans leave artificial fingerprints? (2019) 506\u2013511.","DOI":"10.1109\/MIPR.2019.00103"},{"key":"10.1016\/j.neucom.2022.09.135_b0535","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2020.107616","article-title":"Identification of deep network generated images using disparities in color components","volume":"174","author":"Li","year":"2020","journal-title":"Signal Process."},{"key":"10.1016\/j.neucom.2022.09.135_b0540","doi-asserted-by":"crossref","unstructured":"S. McCloskey, M. Albright, Detecting GAN-generated Imagery using Color Cues, arXiv e-prints (2018) arXiv:1812.08247.","DOI":"10.1109\/ICIP.2019.8803661"},{"key":"10.1016\/j.neucom.2022.09.135_b0545","series-title":"ICASSP 2019\u20132019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"8261","article-title":"Exposing deep fakes using inconsistent head poses","author":"Yang","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0550","first-page":"1755","article-title":"Dlib-ml: A machine learning toolkit","volume":"10","author":"King","year":"2009","journal-title":"Journal of Machine Learning Research"},{"key":"10.1016\/j.neucom.2022.09.135_b0555","series-title":"2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)","first-page":"59","article-title":"Openface 2.0: Facial behavior analysis toolkit","author":"Baltrusaitis","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0560","doi-asserted-by":"crossref","unstructured":"F. Matern, C. Riess, M. Stamminger, Exploiting visual artifacts to expose deepfakes and face manipulations, in: 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), 2019, pp. 83\u201392.","DOI":"10.1109\/WACVW.2019.00020"},{"key":"10.1016\/j.neucom.2022.09.135_b0565","doi-asserted-by":"crossref","unstructured":"C.-C. Hsu, C.-Y. Lee, Y.-X. Zhuang, Learning to detect fake face images in the wild (2018) 388\u2013391.","DOI":"10.1109\/IS3C.2018.00104"},{"key":"10.1016\/j.neucom.2022.09.135_b0570","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"11","key":"10.1016\/j.neucom.2022.09.135_b0575","doi-asserted-by":"crossref","first-page":"2772","DOI":"10.1109\/TIFS.2018.2834147","article-title":"Distinguishing between natural and computer-generated images using convolutional neural networks","volume":"13","author":"Quan","year":"2018","journal-title":"IEEE Transactions on Information Forensics and Security"},{"key":"10.1016\/j.neucom.2022.09.135_b0580","doi-asserted-by":"crossref","unstructured":"Y. Li, M. Chang, S. Lyu, In ictu oculi: Exposing ai created fake videos by detecting eye blinking, in: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), 2018, pp. 1\u20137.","DOI":"10.1109\/WIFS.2018.8630787"},{"key":"10.1016\/j.neucom.2022.09.135_b0585","unstructured":"H.M. Nguyen, R. Derakhshani, Eyebrow recognition for identifying deepfake videos, in: 2020 International Conference of the Biometrics Special Interest Group (BIOSIG), 2020, pp. 1\u20135."},{"issue":"1","key":"10.1016\/j.neucom.2022.09.135_b0590","article-title":"Fakecatcher: Detection of synthetic portrait videos using biological signals","volume":"6","author":"Ciftci","year":"2020","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2022.09.135_b0595","doi-asserted-by":"crossref","first-page":"1841","DOI":"10.1109\/TIFS.2020.3045937","article-title":"Preventing deepfake attacks on speaker authentication by dynamic lip movement analysis","volume":"16","author":"Yang","year":"2021","journal-title":"IEEE Transactions on Information Forensics and Security"},{"key":"10.1016\/j.neucom.2022.09.135_b0600","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops","first-page":"660","article-title":"Detecting deep-fake videos from phoneme-viseme mismatches","author":"Agarwal","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0605","doi-asserted-by":"crossref","unstructured":"S. Rubin, F. Berthouzoz, G.J. Mysore, W. Li, M. Agrawala, Content-based tools for editing audio stories, in: Proceedings of the 26th annual ACM symposium on User interface software and technology, 2013, pp. 113\u2013122.","DOI":"10.1145\/2501988.2501993"},{"key":"10.1016\/j.neucom.2022.09.135_b0610","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"5039","article-title":"Lips don\u2019t lie: A generalisable and robust approach to face forgery detection","author":"Haliassos","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0615","doi-asserted-by":"crossref","unstructured":"I. Amerini, L. Galteri, R. Caldelli, A. Del Bimbo, Deepfake video detection through optical flow based cnn, in: 2019 IEEE\/CVF International Conference on Computer Vision Workshop (ICCVW), 2019, pp. 1205\u20131207.","DOI":"10.1109\/ICCVW.2019.00152"},{"key":"10.1016\/j.neucom.2022.09.135_b0620","series-title":"Proceedings of the 28th ACM International Conference on Multimedia","first-page":"4318","article-title":"Deeprhythm: Exposing deepfakes with attentional visual heartbeat rhythms","author":"Qi","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0625","unstructured":"S. Tariq, S. Lee, S.S. Woo, A Convolutional LSTM based Residual Network for Deepfake Video Detection, arXiv e-prints (2020) arXiv:2009.07480."},{"key":"10.1016\/j.neucom.2022.09.135_b0630","doi-asserted-by":"crossref","first-page":"129494","DOI":"10.1109\/ACCESS.2019.2939812","article-title":"No one can escape: A general approach to detect tampered and generated image","volume":"7","author":"Zhang","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2022.09.135_b0635","first-page":"1","article-title":"A generalizable deepfake detector based on neural conditional distribution modelling","volume":"2020","author":"Khodabakhsh","year":"2020","journal-title":"International Conference of the Biometrics Special Interest Group (BIOSIG)"},{"key":"10.1016\/j.neucom.2022.09.135_b0640","first-page":"1","article-title":"Deepfake videos detection using self-supervised decoupling network","volume":"2021","author":"Zhang","year":"2021","journal-title":"IEEE International Conference on Multimedia and Expo (ICME)"},{"key":"10.1016\/j.neucom.2022.09.135_b0645","series-title":"Defakehop: A light-weight high-performance deepfake detector, in 2021 IEEE International Conference on Multimedia and Expo (ICME)","first-page":"1","author":"Chen","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0650","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"6458","article-title":"Frequency-aware discriminative feature learning supervised by single-center loss for face forgery detection","author":"Li","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0655","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"16317","article-title":"Generalizing face forgery detection with high-frequency features","author":"Luo","year":"2021"},{"issue":"3","key":"10.1016\/j.neucom.2022.09.135_b0660","doi-asserted-by":"crossref","first-page":"868","DOI":"10.1109\/TIFS.2012.2190402","article-title":"Rich models for steganalysis of digital images","volume":"7","author":"Fridrich","year":"2012","journal-title":"IEEE Transactions on Information Forensics and Security"},{"key":"10.1016\/j.neucom.2022.09.135_b0665","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"772","article-title":"Spatial-phase shallow learning: Rethinking face forgery detection in frequency domain","author":"Liu","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0670","doi-asserted-by":"crossref","unstructured":"R. Wang, F. Juefei-Xu, L. Ma, X. Xie, Y. Huang, J. Wang, Y. Liu, Fakespotter: A simple yet robust baseline for spotting ai-synthesized fake faces, in: International Joint Conference on Artificial Intelligence (IJCAI), Vol. 2, 2020.","DOI":"10.24963\/ijcai.2020\/476"},{"key":"10.1016\/j.neucom.2022.09.135_b0675","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops","article-title":"Exposing deepfake videos by detecting face warping artifacts","author":"Li","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0680","article-title":"Deepfake detection based on discrepancies between faces and their context","author":"Nirkin","year":"2021","journal-title":"IEEE Transactions on Pattern Analysis & Machine Intelligence"},{"key":"10.1016\/j.neucom.2022.09.135_b0685","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2929","article-title":"Face forgery detection by 3d decomposition","author":"Zhu","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0690","doi-asserted-by":"crossref","unstructured":"P. Zhou, X. Han, V.I. Morariu, L.S. Davis, Two-stream neural networks for tampered face detection (2017) 1831\u20131839.","DOI":"10.1109\/CVPRW.2017.229"},{"key":"10.1016\/j.neucom.2022.09.135_b0695","series-title":"Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV)","article-title":"Detecting face2face facial reenactment in videos","author":"Kumar","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0700","doi-asserted-by":"crossref","unstructured":"X. Li, K. Yu, S. Ji, Y. Wang, C. Wu, H. Xue, Fighting against deepfake: Patch&pair convolutional neural networks (ppcnn), in: Companion Proceedings of the Web Conference 2020, 2020, pp. 88\u201389.","DOI":"10.1145\/3366424.3382711"},{"key":"10.1016\/j.neucom.2022.09.135_b0705","series-title":"2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)\/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom)","first-page":"70","article-title":"Deepfakestack: A deep ensemble-based learning technique for deepfake detection","author":"Rana","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0710","series-title":"2018 IEEE International Workshop on Information Forensics and Security (WIFS)","first-page":"1","article-title":"Mesonet: a compact facial video forgery detection network","author":"Afchar","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0715","doi-asserted-by":"crossref","unstructured":"H.H. Nguyen, J. Yamagishi, I. Echizen, Use of a Capsule Network to Detect Fake Images and Videos, arXiv e-prints (2019) arXiv:1910.12467.","DOI":"10.1109\/ICASSP.2019.8682602"},{"key":"10.1016\/j.neucom.2022.09.135_b0720","series-title":"ICASSP 2019\u20132019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"2307","article-title":"Capsule-forensics: Using capsule networks to detect forged images and videos","author":"Nguyen","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0725","series-title":"Proceedings of the 29th ACM International Conference on Information & Knowledge Management","first-page":"325","article-title":"Towards generalizable deepfake detection with locality-aware autoencoder","author":"Du","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0730","doi-asserted-by":"crossref","unstructured":"S. Tariq, S. Lee, H. Kim, Y. Shin, S.S. Woo, Detecting both machine and human created fake face images in the wild, in: Proceedings of the 2nd international workshop on multimedia privacy and security, 2018, pp. 81\u201387.","DOI":"10.1145\/3267357.3267367"},{"key":"10.1016\/j.neucom.2022.09.135_b0735","doi-asserted-by":"crossref","unstructured":"A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, M. Nie\u00dfner, Faceforensics++: Learning to detect manipulated facial images (2019) 1\u201311.","DOI":"10.1109\/ICCV.2019.00009"},{"key":"10.1016\/j.neucom.2022.09.135_b0740","doi-asserted-by":"crossref","first-page":"1973","DOI":"10.1109\/TIFS.2020.3047768","article-title":"Detection of fake and fraudulent faces via neural memory networks","volume":"16","author":"Fernando","year":"2021","journal-title":"IEEE Transactions on Information Forensics and Security"},{"key":"10.1016\/j.neucom.2022.09.135_b0745","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"2185","article-title":"Multi-attentional deepfake detection","author":"Zhao","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0750","doi-asserted-by":"crossref","first-page":"370","DOI":"10.3390\/app10010370","article-title":"Deep fake image detection based on pairwise learning","volume":"10","author":"Hsu","year":"2020","journal-title":"Applied Sciences"},{"key":"10.1016\/j.neucom.2022.09.135_b0755","doi-asserted-by":"crossref","unstructured":"Y. Zhuang, C. Hsu, Detecting generated image based on a coupled network with two-step pairwise learning, in: 2019 IEEE International Conference on Image Processing (ICIP), 2019, pp. 3212\u20133216. doi:10.1109\/ICIP.2019.8803464.","DOI":"10.1109\/ICIP.2019.8803464"},{"key":"10.1016\/j.neucom.2022.09.135_b0760","series-title":"Proceedings of the 28th ACM International Conference on Multimedia","first-page":"2823","article-title":"Emotions don\u2019t lie: An audio-visual deepfake detection method using affective cues","author":"Mittal","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0765","series-title":"Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security","first-page":"43","article-title":"Fake faces identification via convolutional neural network","author":"Mo","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.135_b0770","doi-asserted-by":"crossref","unstructured":"Z. Guo, G. Yang, J. Chen, X. Sun, Fake face detection via adaptive residuals extraction network, arXiv e-prints (2020) arXiv:2005.04945.","DOI":"10.1016\/j.cviu.2021.103170"},{"key":"10.1016\/j.neucom.2022.09.135_b0775","unstructured":"N.-T. Do, I.-S. Na, S.-H. Kim, Forensics face detection from gans using convolutional neural network (2018)."},{"key":"10.1016\/j.neucom.2022.09.135_b0780","unstructured":"S. Sabour, N. Frosst, G.E. Hinton, Dynamic routing between capsules, in: Advances in neural information processing systems, 2017, pp. 3856\u20133866."},{"key":"10.1016\/j.neucom.2022.09.135_b0785","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops","article-title":"Recurrent convolutional strategies for face manipulation detection in videos","author":"Sabir","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0790","doi-asserted-by":"crossref","unstructured":"A. Mehra, Deepfake detection using capsule networks with long short-term memory networks, retrieved Dec 18, 2020 from http:\/\/essay.utwente.nl\/83028\/ (August 2020).","DOI":"10.5220\/0010289004070414"},{"key":"10.1016\/j.neucom.2022.09.135_b0795","series-title":"Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security","first-page":"97","article-title":"Exploiting prediction error inconsistencies through lstm-based classifiers to detect deepfake videos","author":"Amerini","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0800","series-title":"European Conference on Computer Vision","first-page":"667","article-title":"Two-branch recurrent network for isolating deepfakes in videos","author":"Masi","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0805","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3609","article-title":"Improving the efficiency and robustness of deepfakes detection through precise geometric features","author":"Sun","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0810","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops","first-page":"656","article-title":"Oc-fakedect: Classifying deepfakes using one-class variational autoencoder","author":"Khalid","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0815","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"5778","article-title":"Face forensics in the wild","author":"Zhou","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0820","doi-asserted-by":"crossref","unstructured":"A. Khodabakhsh, R. Ramachandra, K. Raja, P. Wasnik, C. Busch, Fake face detection methods: Can they be generalized?, in: 2018 International Conference of the Biometrics Special Interest Group (BIOSIG), 2018, pp. 1\u20136.","DOI":"10.23919\/BIOSIG.2018.8553251"},{"key":"10.1016\/j.neucom.2022.09.135_b0825","series-title":"Contributing data to deepfake detection research","author":"Nick Dufour","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.135_b0830","series-title":"Proceedings of International Conference on Computer Vision (ICCV)","article-title":"Deep learning face attributes in the wild","author":"Liu","year":"2015"},{"key":"10.1016\/j.neucom.2022.09.135_b0835","unstructured":"B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, C. Canton Ferrer, The DeepFake Detection Challenge Dataset, arXiv e-prints (2020) arXiv:2006.07397."},{"key":"10.1016\/j.neucom.2022.09.135_b0840","doi-asserted-by":"crossref","unstructured":"L. Jiang, R. Li, W. Wu, C. Qian, C.C. Loy, Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection (2020) 2889\u20132898.","DOI":"10.1109\/CVPR42600.2020.00296"},{"key":"10.1016\/j.neucom.2022.09.135_b0845","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"4360","article-title":"Forgerynet: A versatile benchmark for comprehensive forgery analysis","author":"He","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0850","unstructured":"C. Sanderson, The VidTIMIT Database, Idiap-Com Idiap-Com-06-2002, IDIAP (2002)."},{"issue":"4","key":"10.1016\/j.neucom.2022.09.135_b0855","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1109\/TAFFC.2014.2336244","article-title":"Crema-d: Crowd-sourced emotional multimodal actors dataset","volume":"5","author":"Cao","year":"2014","journal-title":"IEEE transactions on affective computing"},{"issue":"5","key":"10.1016\/j.neucom.2022.09.135_b0860","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0196391","article-title":"The ryerson audio-visual database of emotional speech and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american english","volume":"13","author":"Livingstone","year":"2018","journal-title":"PloS one"},{"key":"10.1016\/j.neucom.2022.09.135_b0865","doi-asserted-by":"crossref","unstructured":"J.S. Chung, A. Nagrani, A. Zisserman, Voxceleb2: Deep speaker recognition, arXiv e-prints (2018) arXiv:1806.05622.","DOI":"10.21437\/Interspeech.2018-1929"},{"key":"10.1016\/j.neucom.2022.09.135_b0870","doi-asserted-by":"crossref","unstructured":"A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim, W.T. Freeman, M. Rubinstein, Looking to listen at the cocktail party: A speaker-independent audio-visual model for speech separation, arXiv-eprints (2018) arXiv:1804.03619.","DOI":"10.1145\/3197517.3201357"},{"key":"10.1016\/j.neucom.2022.09.135_b0875","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"14923","article-title":"Representative forgery mining for fake face detection","author":"Wang","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0880","series-title":"2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL)","first-page":"265","article-title":"An overview of deepfake: The sword of damocles in ai","author":"Tong","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.135_b0885","unstructured":"W. Liang, Z. Liu, C. Liu, DAWSON: A Domain Adaptive Few Shot Generation Framework, arXiv e-prints (2020) arXiv:2001.00576."},{"key":"10.1016\/j.neucom.2022.09.135_b0890","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"9014","article-title":"Magdr: Mask-guided detection and reconstruction for defending deepfakes","author":"Chen","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.135_b0895","first-page":"7137","article-title":"First order motion model for image animation","author":"Siarohin","year":"2019","journal-title":"Advances in Neural Information Processing Systems"},{"issue":"3","key":"10.1016\/j.neucom.2022.09.135_b0900","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.eng.2019.12.012","article-title":"Adversarial attacks and defenses in deep learning","volume":"6","author":"Ren","year":"2020","journal-title":"Engineering"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222012334?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222012334?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T13:16:18Z","timestamp":1706534178000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222012334"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":180,"alternative-id":["S0925231222012334"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.135","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A comprehensive overview of Deepfake: Generation, detection, datasets, and opportunities","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.135","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}