{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,5]],"date-time":"2024-10-05T04:07:40Z","timestamp":1728101260713},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.neucom.2022.09.094","type":"journal-article","created":{"date-parts":[[2022,9,21]],"date-time":"2022-09-21T09:04:49Z","timestamp":1663751089000},"page":"114-126","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["On cropped versus uncropped training sets in tabular structure detection"],"prefix":"10.1016","volume":"513","author":[{"given":"Yakup","family":"Akkaya","sequence":"first","affiliation":[]},{"given":"Murat","family":"Simsek","sequence":"additional","affiliation":[]},{"given":"Burak","family":"Kantarci","sequence":"additional","affiliation":[]},{"given":"Shahzad","family":"Khan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.09.094_b0005","doi-asserted-by":"crossref","unstructured":"O. Ercan, G. Samet, Literature review of industry 4.0 and related technologies, Journal of Intelligent Manufacturing 31 (1) (2020) 127\u2013182, copyright \u2013 Journal of Intelligent Manufacturing is a copyright of Springer, (2018). All Rights Reserved; Last updated - 2020\u201311-17.","DOI":"10.1007\/s10845-018-1433-8"},{"issue":"3","key":"10.1016\/j.neucom.2022.09.094_b0010","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1080\/16258312.2020.1751568","article-title":"Digital technology enablers and their implications for supply chain management","volume":"21","author":"Attaran","year":"2020","journal-title":"Supply Chain Forum: Int. J."},{"key":"10.1016\/j.neucom.2022.09.094_b0015","doi-asserted-by":"crossref","unstructured":"E. Oro, M. Ruffolo, Trex: An approach for recognizing and extracting tables from pdf documents, in: Intl. Conf. on Document Analysis and Recognition, IEEE, 2009, pp. 906\u2013910.","DOI":"10.1109\/ICDAR.2009.12"},{"key":"10.1016\/j.neucom.2022.09.094_b0020","first-page":"779","article-title":"A table detection method for multipage pdf documents via visual seperators and tabular structures","author":"Fang","year":"2011","journal-title":"IEEE ICDAR"},{"key":"10.1016\/j.neucom.2022.09.094_b0025","doi-asserted-by":"crossref","first-page":"87663","DOI":"10.1109\/ACCESS.2021.3087865","article-title":"Current status and performance analysis of table recognition in document images with deep neural networks","volume":"9","author":"Hashmi","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2022.09.094_b0030","series-title":"2011 International Conference on Document Analysis and Recognition, IEEE","first-page":"779","article-title":"A table detection method for multipage pdf documents via visual seperators and tabular structures","author":"Fang","year":"2011"},{"issue":"4","key":"10.1016\/j.neucom.2022.09.094_b0035","doi-asserted-by":"crossref","first-page":"77","DOI":"10.5392\/IJoC.2015.11.4.077","article-title":"Table detection from document image using vertical arrangement of text blocks","volume":"11","author":"Tran","year":"2015","journal-title":"Int. J. Contents"},{"key":"10.1016\/j.neucom.2022.09.094_b0040","series-title":"IEEE Symposium on Computers and Communications (ISCC)","article-title":"Deep learning for the detection of tabular information from electronic component datasheets","author":"Traquair","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.094_b0045","doi-asserted-by":"crossref","unstructured":"F. Cesarini, S. Marinai, L. Sarti, G. Soda, Trainable table location in document images, in: Object recognition supported by user interaction for service robots, Vol. 3, IEEE, 2002, pp. 236\u2013240.","DOI":"10.1109\/ICPR.2002.1047838"},{"key":"10.1016\/j.neucom.2022.09.094_b0050","first-page":"287","article-title":"A table detection method for pdf documents based on convolutional neural networks, in: 2016 12th IAPR Workshop on Document Analysis Systems (DAS)","volume":"2016","author":"Hao","year":"2016","journal-title":"IEEE"},{"journal-title":"Table detection using deep learning","year":"2017","author":"Gilani","key":"10.1016\/j.neucom.2022.09.094_b0055"},{"key":"10.1016\/j.neucom.2022.09.094_b0060","series-title":"IEEE Symposium on Computers and Communications (ISCC)","article-title":"High precision deep learning based tabular detection","author":"Jiang","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.094_b0065","first-page":"1","article-title":"Deep learning for recognizing the anatomy of tables on datasheets","volume":"2019","author":"Kara","year":"2019","journal-title":"IEEE Symposium on Computers and Communications (ISCC)"},{"key":"10.1016\/j.neucom.2022.09.094_b0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.103551","article-title":"Holistic design for deep learning-based discovery of tabular structures in datasheet images","volume":"90","author":"Kara","year":"2020","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.neucom.2022.09.094_b0075","series-title":"Proceedings of the IEEE\/CVF Conference on CVPR Workshops","first-page":"572","article-title":"Cascadetabnet: An approach for end to end table detection and structure recognition from image-based documents","author":"Prasad","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.094_b0080","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2021.01.103","article-title":"Tabcellnet: Deep learning-based tabular cell structure detection","author":"Jiang","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.094_b0085","doi-asserted-by":"crossref","unstructured":"L. Qiao, Z. Li, Z. Cheng, P. Zhang, S. Pu, Y. Niu, W. Ren, W. Tan, F. Wu, Lgpma: Complicated table structure recognition with local and global pyramid mask alignment (2021). arXiv:2105.06224.","DOI":"10.1007\/978-3-030-86549-8_7"},{"key":"10.1016\/j.neucom.2022.09.094_b0090","series-title":"Computer Vision \u2013 ECCV 2020","first-page":"70","article-title":"Table structure recognition using top-down and bottom-up cues","author":"Raja","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.094_b0095","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1109\/WACV48630.2021.00074","article-title":"Global table extractor (gte): A framework for joint table identification and cell structure recognition using visual context","volume":"2021","author":"Zheng","year":"2021","journal-title":"IEEE Winter Conference on Applications of Computer Vision (WACV)"},{"key":"10.1016\/j.neucom.2022.09.094_b0100","doi-asserted-by":"crossref","first-page":"113521","DOI":"10.1109\/ACCESS.2021.3103413","article-title":"Guided table structure recognition through anchor optimization","volume":"9","author":"Hashmi","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.neucom.2022.09.094_b0105","doi-asserted-by":"crossref","unstructured":"S. Schreiber, S. Agne, I. Wolf, A. Dengel, S. Ahmed, Deepdesrt: Deep learning for detection and structure recognition of tables in document images, in: Intl. Conf. on Document Analysis and Recognition, Vol. 01, 2017, pp. 1162\u20131167.","DOI":"10.1109\/ICDAR.2017.192"},{"key":"10.1016\/j.neucom.2022.09.094_b0110","doi-asserted-by":"crossref","unstructured":"S.A. Siddiqui, I.A. Fateh, S.T.R. Rizvi, A. Dengel, S. Ahmed, Deeptabstr: Deep learning based table structure recognition, in: Intl. Conf. on Document Analysis and Recognition, 2019, pp. 1403\u20131409.","DOI":"10.1109\/ICDAR.2019.00226"},{"key":"10.1016\/j.neucom.2022.09.094_b0115","doi-asserted-by":"crossref","unstructured":"S.S. Paliwal, V. D, R. Rahul, M. Sharma, L. Vig, Tablenet: Deep learning model for end-to-end table detection and tabular data extraction from scanned document images, in: Intl. Conf. on Document Analysis and Recognition, 2019, pp. 128\u2013133.","DOI":"10.1109\/ICDAR.2019.00029"},{"key":"10.1016\/j.neucom.2022.09.094_b0120","doi-asserted-by":"crossref","unstructured":"M. G\u00f6bel, T. Hassan, E. Oro, G. Orsi, A methodology for evaluating algorithms for table understanding in pdf documents, in: Proceedings of the 2012 ACM Symposium on Document Engineering, DocEng \u201912, Association for Computing Machinery, New York, NY, USA, 2012, p. 45\u201348. doi:10.1145\/2361354.2361365. URL:https:\/\/doi-org.proxy.bib.uottawa.ca\/10.1145\/2361354.2361365.","DOI":"10.1145\/2361354.2361365"},{"key":"10.1016\/j.neucom.2022.09.094_b0125","series-title":"Computer Vision \u2013 ECCV 2020","first-page":"564","article-title":"A. Jimeno Yepes, Image-based table recognition: Data, model, and evaluation","author":"Zhong","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.094_b0130","series-title":"Proceedings of the 40th annual meeting of the Association for Computational Linguistics","first-page":"311","article-title":"Bleu: a method for automatic evaluation of machine translation","author":"Papineni","year":"2002"},{"key":"10.1016\/j.neucom.2022.09.094_b0135","series-title":"2019 International Conference on Document Analysis and Recognition (ICDAR), IEEE","first-page":"1397","article-title":"Rethinking semantic segmentation for table structure recognition in documents","author":"Siddiqui","year":"2019"},{"issue":"3","key":"10.1016\/j.neucom.2022.09.094_b0140","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1007\/s13735-020-00195-x","article-title":"A survey on instance segmentation: state of the art","volume":"9","author":"Hafiz","year":"2020","journal-title":"Int. J. Multimedia Inform. Retrieval"},{"key":"10.1016\/j.neucom.2022.09.094_b0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TPAMI.2021.3059968","article-title":"Image segmentation using deep learning: A survey","author":"Minaee","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.neucom.2022.09.094_b0150","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","article-title":"Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning","volume":"35","author":"Shin","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.neucom.2022.09.094_b0155","doi-asserted-by":"crossref","unstructured":"K. He, G. Gkioxari, P. Doll\u00e1r, R. Girshick, Mask r-cnn, in: IEEE Intl. Conf. on Computer Vision, 2017, pp. 2980\u20132988.","DOI":"10.1109\/ICCV.2017.322"},{"issue":"6","key":"10.1016\/j.neucom.2022.09.094_b0160","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","article-title":"Faster r-cnn: Towards real-time object detection with region proposal networks","volume":"39","author":"Ren","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2022.09.094_b0165","first-page":"1440","article-title":"Fast r-cnn","author":"Girshick","year":"2015","journal-title":"IEEE Intl. Conf. on Computer Vision"},{"key":"10.1016\/j.neucom.2022.09.094_b0170","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016","journal-title":"IEEE Conference on CVPR"},{"key":"10.1016\/j.neucom.2022.09.094_b0175","first-page":"6154","article-title":"Cascade r-cnn: Delving into high quality object detection","author":"Cai","year":"2018","journal-title":"IEEE\/CVF Conference on CVPR"},{"key":"10.1016\/j.neucom.2022.09.094_b0180","first-page":"1","article-title":"Cascade r-cnn: High quality object detection and instance segmentation","author":"Cai","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2022.09.094_b0185","first-page":"1","article-title":"Deep high-resolution representation learning for visual recognition","author":"Wang","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.neucom.2022.09.094_b0190","first-page":"4969","article-title":"Hybrid task cascade for instance segmentation","author":"Chen","year":"2019","journal-title":"IEEE\/CVF CVPR"},{"key":"10.1016\/j.neucom.2022.09.094_b0195","first-page":"936","article-title":"Feature pyramid networks for object detection","author":"Lin","year":"2017","journal-title":"IEEE Conf. on CVPR"},{"issue":"07","key":"10.1016\/j.neucom.2022.09.094_b0200","first-page":"11653","article-title":"Cbnet: A novel composite backbone network architecture for object detection","volume":"34","author":"Liu","year":"2020","journal-title":"AAAI Conf. on Artificial Intelligence"},{"key":"10.1016\/j.neucom.2022.09.094_b0205","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.neucom.2022.09.094_b0210","first-page":"5987","article-title":"Aggregated residual transformations for deep neural networks","author":"Xie","year":"2017","journal-title":"IEEE Conf. on Computer Vision and Pattern Recognition"},{"key":"10.1016\/j.neucom.2022.09.094_b0215","doi-asserted-by":"crossref","unstructured":"M. G\u00f6bel, T. Hassan, E. Oro, G. Orsi, Icdar 2013 table competition, in: 2013 12th International Conference on Document Analysis and Recognition, 2013, pp. 1449\u20131453. doi:10.1109\/ICDAR.2013.292.","DOI":"10.1109\/ICDAR.2013.292"},{"key":"10.1016\/j.neucom.2022.09.094_b0220","doi-asserted-by":"crossref","unstructured":"L. Gao, X. Yi, Z. Jiang, L. Hao, Z. Tang, Icdar 2017 competition on page object detection, in: IAPR Intl. Conf. on Document Analysis and Recognition, vol. 01, 2017, pp. 1417\u20131422.","DOI":"10.1109\/ICDAR.2017.231"},{"key":"10.1016\/j.neucom.2022.09.094_b0225","unstructured":"K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C.C. Loy, D. Lin, MMDetection: Open mmlab detection toolbox and benchmark, arXiv preprint arXiv:1906.07155 (2019)."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222011870?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222011870?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,4]],"date-time":"2024-10-04T07:09:32Z","timestamp":1728025772000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222011870"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":45,"alternative-id":["S0925231222011870"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.094","relation":{},"ISSN":["0925-2312"],"issn-type":[{"type":"print","value":"0925-2312"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On cropped versus uncropped training sets in tabular structure detection","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.094","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}