{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T00:00:37Z","timestamp":1720396837773},"reference-count":54,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012326","name":"International Science and Technology Cooperation Programme","doi-asserted-by":"publisher","award":["2015DFR10830"],"id":[{"id":"10.13039\/501100012326","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.neucom.2022.09.056","type":"journal-article","created":{"date-parts":[[2022,9,9]],"date-time":"2022-09-09T13:12:43Z","timestamp":1662729163000},"page":"273-289","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["CTpoint: A novel local and global features extractor for point cloud"],"prefix":"10.1016","volume":"511","author":[{"given":"Shangwei","family":"Guo","sequence":"first","affiliation":[]},{"given":"Jun","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhengchao","family":"Lai","sequence":"additional","affiliation":[]},{"given":"Shaokun","family":"Han","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.neucom.2022.09.056_b0005","series-title":"Proceedings of the IEEE conference on Computer Vision and Pattern Recognition","first-page":"1907","article-title":"Multi-view 3d object detection network for autonomous driving","author":"Chen","year":"2017"},{"key":"10.1016\/j.neucom.2022.09.056_b0010","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"7345","article-title":"Multi-task multi-sensor fusion for 3d object detection","author":"Liang","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.056_b0015","unstructured":"Mingyang Jiang, Yiran Wu, Tianqi Zhao, Zelin Zhao, and Cewu Lu. Pointsift: A sift-like network module for 3d point cloud semantic segmentation. arXiv preprint arXiv:1807.00652, 2018."},{"key":"10.1016\/j.neucom.2022.09.056_b0020","series-title":"Proceedings of the IEEE international conference on computer vision","first-page":"945","article-title":"Multi-view convolutional neural networks for 3d shape recognition","author":"Hang","year":"2015"},{"key":"10.1016\/j.neucom.2022.09.056_b0025","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"186","article-title":"Multi-view harmonized bilinear network for 3d object recognition","author":"Tan","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.056_b0030","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"1850","article-title":"View-gcn: View-based graph convolutional network for 3d shape analysis","author":"Wei","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.056_b0035","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"1912","article-title":"3d shapenets: A deep representation for volumetric shapes","author":"Zhirong","year":"2015"},{"key":"10.1016\/j.neucom.2022.09.056_b0040","series-title":"2015 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS)","first-page":"922","article-title":"Voxnet: A 3d convolutional neural network for real-time object recognition","author":"Maturana","year":"2015"},{"key":"10.1016\/j.neucom.2022.09.056_b0045","doi-asserted-by":"crossref","unstructured":"Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652\u2013660, 2017a.","DOI":"10.1109\/CVPR.2017.16"},{"key":"10.1016\/j.neucom.2022.09.056_b0050","unstructured":"Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413, 2017b."},{"key":"10.1016\/j.neucom.2022.09.056_b0055","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"3693","article-title":"Dynamic edge-conditioned filters in convolutional neural networks on graphs","author":"Simonovsky","year":"2017"},{"issue":"5","key":"10.1016\/j.neucom.2022.09.056_b0060","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3326362","article-title":"Dynamic graph cnn for learning on point clouds","volume":"38","author":"Wang","year":"2019","journal-title":"Acm Transactions On Graphics (tog)"},{"key":"10.1016\/j.neucom.2022.09.056_b0065","unstructured":"Jinxian Liu, Bingbing Ni, Caiyuan Li, Jiancheng Yang, and Qi Tian. Dynamic points agglomeration for hierarchical point sets learning. In Proceedings of the IEEE\/CVF International Conference on Computer Vision, pages 7546\u20137555, 2019a."},{"key":"10.1016\/j.neucom.2022.09.056_b0070","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"4548","article-title":"Mining point cloud local structures by kernel correlation and graph pooling","author":"Shen","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.056_b0075","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"4994","article-title":"Clusternet: Deep hierarchical cluster network with rigorously rotation-invariant representation for point cloud analysis","author":"Chen","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.056_b0080","unstructured":"Josh Beal, Eric Kim, Eric Tzeng, Dong Huk Park, Andrew Zhai, and Dmitry Kislyuk. Toward transformer-based object detection. arXiv preprint arXiv:2012.09958, 2020."},{"key":"10.1016\/j.neucom.2022.09.056_b0085","doi-asserted-by":"crossref","unstructured":"Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision, pages 213\u2013229. Springer, 2020.","DOI":"10.1007\/978-3-030-58452-8_13"},{"key":"10.1016\/j.neucom.2022.09.056_b0090","unstructured":"Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020."},{"key":"10.1016\/j.neucom.2022.09.056_b0095","unstructured":"Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herv\u00e9 J\u00e9gou. Training data-efficient image transformers & distillation through attention. In International Conference on Machine Learning, pages 10347\u201310357. PMLR, 2021."},{"key":"10.1016\/j.neucom.2022.09.056_b0100","unstructured":"Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation and processing for computer vision. arXiv preprint arXiv:2006.03677, 2020."},{"key":"10.1016\/j.neucom.2022.09.056_b0105","doi-asserted-by":"crossref","unstructured":"Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint arXiv:2101.11986, 2021.","DOI":"10.1109\/ICCV48922.2021.00060"},{"key":"10.1016\/j.neucom.2022.09.056_b0110","unstructured":"Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020."},{"key":"10.1016\/j.neucom.2022.09.056_b0115","doi-asserted-by":"crossref","unstructured":"Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud transformer. Computational Visual Media, 7 (2): 187\u2013199, 2021.","DOI":"10.1007\/s41095-021-0229-5"},{"key":"10.1016\/j.neucom.2022.09.056_b0120","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"16259","article-title":"Point transformer","author":"Zhao","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.056_b0125","doi-asserted-by":"crossref","unstructured":"Zhiliang Peng, Wei Huang, Shanzhi Gu, Lingxi Xie, Yaowei Wang, Jianbin Jiao, and Qixiang Ye. Conformer: Local features coupling global representations for visual recognition. arXiv preprint arXiv:2105.03889, 2021.","DOI":"10.1109\/ICCV48922.2021.00042"},{"key":"10.1016\/j.neucom.2022.09.056_b0130","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"5589","article-title":"Pointasnl: Robust point clouds processing using nonlocal neural networks with adaptive sampling","author":"Yan","year":"2020"},{"key":"10.1016\/j.neucom.2022.09.056_b0135","article-title":"Pnp-3d: A plug-and-play for 3d point clouds","author":"Qiu","year":"2021","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"key":"10.1016\/j.neucom.2022.09.056_b0140","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"9224","article-title":"3d semantic segmentation with submanifold sparse convolutional networks","author":"Graham","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.056_b0145","article-title":"Deep learning for 3d point clouds: A survey","author":"Guo","year":"2020","journal-title":"IEEE transactions on pattern analysis and machine intelligence"},{"key":"10.1016\/j.neucom.2022.09.056_b0150","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"9621","article-title":"Pointconv: Deep convolutional networks on 3d point clouds","author":"Wenxuan","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.056_b0155","unstructured":"Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on \u03c7)transformed points. arXiv preprint arXiv:1801.07791, 2018."},{"key":"10.1016\/j.neucom.2022.09.056_b0160","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"6411","article-title":"Kpconv: Flexible and deformable convolution for point clouds","author":"Thomas","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.056_b0165","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"3173","article-title":"Paconv: Position adaptive convolution with dynamic kernel assembling on point clouds","author":"Mutian","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.056_b0170","doi-asserted-by":"crossref","unstructured":"Yiming Cui, Xin Liu, Hongmin Liu, Jiyong Zhang, Alina Zare, and Bin Fan. Geometric attentional dynamic graph convolutional neural networks for point cloud analysis. Neurocomputing, 432: 300\u2013310, 2021. ISSN 0925\u20132312. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0925231220319676.","DOI":"10.1016\/j.neucom.2020.12.067"},{"key":"10.1016\/j.neucom.2022.09.056_b0175","doi-asserted-by":"crossref","unstructured":"Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pages 6881\u20136890, 2021.","DOI":"10.1109\/CVPR46437.2021.00681"},{"key":"10.1016\/j.neucom.2022.09.056_b0180","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.neucom.2022.09.056_b0185","unstructured":"Xian-Feng Han, Yi-Fei Jin, Hui-Xian Cheng, and Guo-Qiang Xiao. Dual transformer for point cloud analysis. arXiv preprint arXiv:2104.13044, 2021."},{"key":"10.1016\/j.neucom.2022.09.056_b0190","unstructured":"Shi Qiu, Saeed Anwar, and Nick Barnes. Pu-transformer: Point cloud upsampling transformer. arXiv preprint arXiv:2111.12242, 2021b."},{"key":"10.1016\/j.neucom.2022.09.056_b0195","unstructured":"Renrui Zhang, Ziyao Zeng, Ziyu Guo, Xinben Gao, Kexue Fu, and Jianbo Shi. Dspoint: Dual-scale point cloud recognition with high-frequency fusion. arXiv preprint arXiv:2111.10332, 2021."},{"key":"10.1016\/j.neucom.2022.09.056_b0200","unstructured":"Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998\u20136008, 2017."},{"key":"10.1016\/j.neucom.2022.09.056_b0205","series-title":"International Conference on Medical image computing and computer-assisted intervention","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.neucom.2022.09.056_b0210","doi-asserted-by":"crossref","unstructured":"Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in 3d shape collections. ACM Transactions on Graphics (ToG), 35 (6): 1\u201312, 2016.","DOI":"10.1145\/2980179.2980238"},{"key":"10.1016\/j.neucom.2022.09.056_b0215","doi-asserted-by":"crossref","unstructured":"Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1534\u20131543, 2016.","DOI":"10.1109\/CVPR.2016.170"},{"key":"10.1016\/j.neucom.2022.09.056_b0220","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"5565","article-title":"Pointweb: Enhancing local neighborhood features for point cloud processing","author":"Zhao","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.056_b0225","unstructured":"Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural network for point cloud analysis. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pages 8895\u20138904, 2019b."},{"key":"10.1016\/j.neucom.2022.09.056_b0230","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"863","article-title":"Escape from cells: Deep kd-networks for the recognition of 3d point cloud models","author":"Klokov","year":"2017"},{"key":"10.1016\/j.neucom.2022.09.056_b0235","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"2282","article-title":"Syncspeccnn: Synchronized spectral cnn for 3d shape segmentation","author":"Yi","year":"2017"},{"key":"10.1016\/j.neucom.2022.09.056_b0240","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"87","article-title":"Spidercnn: Deep learning on point sets with parameterized convolutional filters","author":"Yifan","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.056_b0245","series-title":"2017 international conference on 3D vision (3DV)","first-page":"537","article-title":"Segcloud: Semantic segmentation of 3d point clouds","author":"Tchapmi","year":"2017"},{"key":"10.1016\/j.neucom.2022.09.056_b0250","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3887","article-title":"Tangent convolutions for dense prediction in 3d","author":"Tatarchenko","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.056_b0255","doi-asserted-by":"crossref","unstructured":"Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural networks by extension operators. arXiv preprint arXiv:1803.10091, 2018.","DOI":"10.1145\/3197517.3201301"},{"key":"10.1016\/j.neucom.2022.09.056_b0260","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"4558","article-title":"Large-scale point cloud semantic segmentation with superpoint graphs","author":"Landrieu","year":"2018"},{"key":"10.1016\/j.neucom.2022.09.056_b0265","doi-asserted-by":"crossref","unstructured":"Shi Qiu, Saeed Anwar, and Nick Barnes. Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pages 1757\u20131767, 2021c.","DOI":"10.1109\/CVPR46437.2021.00180"},{"key":"10.1016\/j.neucom.2022.09.056_b0270","unstructured":"Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pages 11108\u201311117, 2020."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222011626?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222011626?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,29]],"date-time":"2024-01-29T08:10:02Z","timestamp":1706515802000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222011626"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":54,"alternative-id":["S0925231222011626"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.056","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"CTpoint: A novel local and global features extractor for point cloud","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.056","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}