{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,23]],"date-time":"2025-04-23T02:07:16Z","timestamp":1745374036331},"reference-count":50,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.neucom.2022.09.048","type":"journal-article","created":{"date-parts":[[2022,9,9]],"date-time":"2022-09-09T17:11:51Z","timestamp":1662743511000},"page":"213-222","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["DIIK-Net: A full-resolution cross-domain deep interaction convolutional neural network for MR image reconstruction"],"prefix":"10.1016","volume":"517","author":[{"given":"Yu","family":"Liu","sequence":"first","affiliation":[]},{"given":"Yanwei","family":"Pang","sequence":"additional","affiliation":[]},{"given":"Xiaohan","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yiming","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Nie","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.neucom.2022.09.048_b0005","doi-asserted-by":"crossref","first-page":"990","DOI":"10.1002\/mrm.24751","article-title":"ESPIRiT\u2013an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA","volume":"71","author":"Uecker","year":"2014","journal-title":"Magnetic Resonance in Medicine"},{"issue":"6","key":"10.1016\/j.neucom.2022.09.048_b0010","doi-asserted-by":"crossref","first-page":"1300","DOI":"10.1002\/jmri.23742","article-title":"Rapid gradient-echo imaging","volume":"36","author":"Hargreaves","year":"2012","journal-title":"Journal of Magnetic Resonance Imaging"},{"issue":"5","key":"10.1016\/j.neucom.2022.09.048_b0015","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1002\/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S","article-title":"SENSE: Sensitivity encoding for fast MRI","volume":"42","author":"Pruessmann","year":"1999","journal-title":"Magnetic Resonance in Medicine"},{"issue":"4","key":"10.1016\/j.neucom.2022.09.048_b0020","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1002\/mrm.1910380414","article-title":"Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays","volume":"38","author":"Sodickson","year":"1997","journal-title":"Magnetic Resonance in Medicine"},{"issue":"6","key":"10.1016\/j.neucom.2022.09.048_b0025","doi-asserted-by":"crossref","first-page":"1202","DOI":"10.1002\/mrm.10171","article-title":"Generalized autocalibrating partially parallel acquisitions (GRAPPA)","volume":"47","author":"Griswold","year":"2002","journal-title":"Magnetic Resonance in Medicine"},{"issue":"4","key":"10.1016\/j.neucom.2022.09.048_b0030","doi-asserted-by":"crossref","first-page":"1499","DOI":"10.1002\/mrm.25717","article-title":"P-LORAKS: Low-rank modeling of local k-space neighborhoods with parallel imaging data","volume":"75","author":"Haldar","year":"2016","journal-title":"Magnetic Resonance in Medicine"},{"issue":"3","key":"10.1016\/j.neucom.2022.09.048_b0035","doi-asserted-by":"crossref","first-page":"1021","DOI":"10.1002\/mrm.26182","article-title":"LORAKS makes better SENSE: Phase-constrained partial fourier SENSE reconstruction without phase calibration","volume":"77","author":"Kim","year":"2017","journal-title":"Magnetic Resonance in Medicine"},{"issue":"4","key":"10.1016\/j.neucom.2022.09.048_b0040","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1002\/mrm.24997","article-title":"Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion","volume":"72","author":"Shin","year":"2014","journal-title":"Magnetic Resonance in Medicine"},{"issue":"2","key":"10.1016\/j.neucom.2022.09.048_b0045","doi-asserted-by":"crossref","first-page":"750","DOI":"10.1002\/mrm.25663","article-title":"STEP: Self-supporting tailored k-space estimation for parallel imaging reconstruction","volume":"75","author":"Zhou","year":"2016","journal-title":"Magnetic Resonance in Medicine"},{"issue":"6","key":"10.1016\/j.neucom.2022.09.048_b0050","doi-asserted-by":"crossref","first-page":"1086","DOI":"10.1002\/mrm.21236","article-title":"Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint","volume":"57","author":"Block","year":"2007","journal-title":"Magnetic Resonance in Medicine"},{"issue":"2","key":"10.1016\/j.neucom.2022.09.048_b0055","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1137\/040605412","article-title":"An Iterative Regularization Method for Total Variation-Based Image Restoration","volume":"4","author":"Osher","year":"2005","journal-title":"Multiscale Modeling & Simulation"},{"key":"10.1016\/j.neucom.2022.09.048_b0060","doi-asserted-by":"crossref","first-page":"750","DOI":"10.1016\/j.neucom.2022.05.033","article-title":"Anatomical prior based vertebra modelling for reappearance of human spines","volume":"500","author":"Huang","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.048_b0065","series-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence","first-page":"1","article-title":"Part-Object Relational Visual Saliency","author":"Liu","year":"2021"},{"key":"10.1016\/j.neucom.2022.09.048_b0070","doi-asserted-by":"crossref","first-page":"02","DOI":"10.1007\/s11432-020-2969-8","article-title":"PSC-Net: learning part spatial co-occurrence for occluded pedestrian detection","volume":"64","author":"Xie","year":"2021","journal-title":"Science China Information Sciences"},{"issue":"4","key":"10.1016\/j.neucom.2022.09.048_b0075","doi-asserted-by":"crossref","first-page":"1993","DOI":"10.1109\/TIP.2018.2882155","article-title":"Unsupervised deep video hashing via balanced code for large-scale video retrieval","volume":"28","author":"Gengshen","year":"2019","journal-title":"IEEE Transactions on Image Processing"},{"key":"10.1016\/j.neucom.2022.09.048_b0080","first-page":"02","article-title":"CGNet: cross-guidance network for semantic segmentation","volume":"63","author":"Zhang","year":"2020","journal-title":"Science China Information Sciences"},{"key":"10.1016\/j.neucom.2022.09.048_b0085","doi-asserted-by":"crossref","first-page":"5154","DOI":"10.1109\/TIFS.2021.3124734","article-title":"Integrating part-object relationship and contrast for camouflaged object detection","volume":"16","author":"Liu","year":"2021","journal-title":"IEEE Transactions on Information Forensics and Security"},{"key":"10.1016\/j.neucom.2022.09.048_b0090","doi-asserted-by":"crossref","first-page":"02","DOI":"10.1007\/s11432-019-2738-y","article-title":"Preserving details in semantics-aware context for scene parsing","volume":"63","author":"Ma","year":"2020","journal-title":"Science China Information Sciences"},{"key":"10.1016\/j.neucom.2022.09.048_b0095","doi-asserted-by":"crossref","unstructured":"Shanshan Wang, Zhenghang Su, Leslie Ying, Xi Peng, Shun Zhu, Feng Liang, Dagan Feng, and Dong Liang. Accelerating magnetic resonance imaging via deep learning. In IEEE International Symposium on Biomedical Imaging, pages 514\u2013517, 2016.","DOI":"10.1109\/ISBI.2016.7493320"},{"key":"10.1016\/j.neucom.2022.09.048_b0100","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.neucom.2021.01.130","article-title":"Brain MRI super-resolution using coupled-projection residual network","volume":"456","author":"Feng","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.048_b0105","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1016\/j.neucom.2022.04.051","article-title":"Swin transformer for fast MRI","volume":"493","author":"Huang","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.048_b0110","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.neucom.2020.09.008","article-title":"Efficient structurally-strengthened generative adversarial network for MRI reconstruction","volume":"422","author":"Zhou","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.048_b0115","doi-asserted-by":"crossref","unstructured":"Guang Yang, Simiao Yu, Hao Dong, Greg Slabaugh, Pier Luigi Dragotti, Xujiong Ye, Fangde Liu, Simon Arridge, Jennifer Keegan, Yike Guo, and David Firmin. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. IEEE Transactions on Medical Imaging, 37(6), 1310\u20131321, 2018.","DOI":"10.1109\/TMI.2017.2785879"},{"issue":"6","key":"10.1016\/j.neucom.2022.09.048_b0120","doi-asserted-by":"crossref","first-page":"1488","DOI":"10.1109\/TMI.2018.2820120","article-title":"Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss","volume":"37","author":"Quan","year":"2018","journal-title":"IEEE Transactions on Medical Imaging"},{"issue":"1","key":"10.1016\/j.neucom.2022.09.048_b0125","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1109\/TMI.2018.2858752","article-title":"Deep generative adversarial neural networks for compressive sensing mri","volume":"38","author":"Mardani","year":"2019","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neucom.2022.09.048_b0130","doi-asserted-by":"crossref","unstructured":"Changheun Oh, Dongchan Kim, Jun-Young Chung, Yeji Han, and HyunWook Park. ETER-net: End to End MR Image Reconstruction Using Recurrent Neural Network. Lecture Notes in Computer Science, 11074 LNCS:12\u201320, 2018.","DOI":"10.1007\/978-3-030-00129-2_2"},{"key":"10.1016\/j.neucom.2022.09.048_b0135","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.mri.2019.07.014","article-title":"Compressed sensing MRI via a multi-scale dilated residual convolution network","volume":"63","author":"Dai","year":"2019","journal-title":"Magnetic Resonance Imaging"},{"key":"10.1016\/j.neucom.2022.09.048_b0140","series-title":"IEEE International Workshop on Machine Learning for Signal Processing","article-title":"A Multimodal Dense U-Net for Accelerating Multiple Sclerosis MRI","author":"Falvo","year":"2019"},{"key":"10.1016\/j.neucom.2022.09.048_b0145","unstructured":"Pak Lun Kevin. Ding, Zhiqiang. Li, Yuxiang. Zhou, and Baoxin. Li. Deep residual dense U-Net for resolution enhancement in accelerated MRI acquisition. volume 10949, 2019."},{"issue":"2","key":"10.1016\/j.neucom.2022.09.048_b0150","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1109\/TMI.2019.2927101","article-title":"K-Space Deep Learning for Accelerated MRI","volume":"39","author":"Han","year":"2020","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neucom.2022.09.048_b0155","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.mri.2020.02.002","article-title":"DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution","volume":"68","author":"Wang","year":"2020","journal-title":"Magnetic Resonance Imaging"},{"issue":"5","key":"10.1016\/j.neucom.2022.09.048_b0160","doi-asserted-by":"crossref","first-page":"2188","DOI":"10.1002\/mrm.27201","article-title":"KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images","volume":"80","author":"Eo","year":"2018","journal-title":"Magnetic Resonance in Medicine"},{"issue":"4","key":"10.1016\/j.neucom.2022.09.048_b0165","doi-asserted-by":"crossref","DOI":"10.1002\/nbm.4131","article-title":"DIMENSION: Dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training","volume":"35","author":"Wang","year":"2022","journal-title":"NMR in Biomedicine"},{"key":"10.1016\/j.neucom.2022.09.048_b0170","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.neucom.2020.01.063","article-title":"A dual-domain deep lattice network for rapid MRI reconstruction","volume":"397","author":"Sun","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.09.048_b0175","unstructured":"Roberto Souza, R Lebel, and Richard Frayne. A hybrid, dual domain, cascade of convolutional neural networks for magnetic resonance image reconstruction. International Conference on Medical Imaging with Deep Learning, 102:437\u2013446, 2019."},{"issue":"1","key":"10.1016\/j.neucom.2022.09.048_b0180","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1109\/TRPMS.2020.2991877","article-title":"MD-Recon-Net: A Parallel Dual-Domain Convolutional Neural Network for Compressed Sensing MRI","volume":"5","author":"Ran","year":"2021","journal-title":"IEEE Transactions on Radiation and Plasma Medical Sciences"},{"key":"10.1016\/j.neucom.2022.09.048_b0185","unstructured":"Xiaohan Liu, Yanwei Pang, Ruiqi Jin, Yu Liu, and Zhenchang Wang. Dual-Domain Reconstruction Network with V-Net and K-Net for Fast MRI. Magnetic Resonance in Medicine, n\/a(n\/a)."},{"key":"10.1016\/j.neucom.2022.09.048_b0190","unstructured":"Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua. Bengio. Generative Adversarial Networks. Advances in Neural Information Processing Systems, 3, 2014."},{"key":"10.1016\/j.neucom.2022.09.048_b0195","series-title":"Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.neucom.2022.09.048_b0200","unstructured":"Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Computer Vision and Pattern Recognition, pages 770\u2013778, 2016."},{"key":"10.1016\/j.neucom.2022.09.048_b0205","series-title":"IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"6645","article-title":"Speech recognition with deep recurrent neural networks","author":"Graves","year":"2013"},{"issue":"2","key":"10.1016\/j.neucom.2022.09.048_b0210","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1109\/TMI.2017.2760978","article-title":"A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction","volume":"37","author":"Schlemper","year":"2018","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neucom.2022.09.048_b0215","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.ins.2019.03.080","article-title":"Self-attention convolutional neural network for improved MR image reconstruction","volume":"490","author":"Yan","year":"2019","journal-title":"Information Sciences"},{"issue":"7","key":"10.1016\/j.neucom.2022.09.048_b0220","doi-asserted-by":"crossref","first-page":"1747","DOI":"10.1109\/TMI.2022.3147426","article-title":"Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers","volume":"41","author":"Korkmaz","year":"2022","journal-title":"IEEE Transactions on Medical Imaging"},{"key":"10.1016\/j.neucom.2022.09.048_b0225","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.mri.2020.06.015","article-title":"IKWI-net: A cross-domain convolutional neural network for undersampled magnetic resonance image reconstruction","volume":"73","author":"Wang","year":"2020","journal-title":"Magnetic Resonance Imaging"},{"key":"10.1016\/j.neucom.2022.09.048_b0230","doi-asserted-by":"crossref","unstructured":"Bo Zhou and Shaohua Kevin Zhou. DuDoRNet: Learning a Dual-Domain Recurrent Network for Fast MRI Reconstruction With Deep T1 Prior. In Computer Vision and Pattern Recognition, pages 4272\u20134281, 2020.","DOI":"10.1109\/CVPR42600.2020.00433"},{"key":"10.1016\/j.neucom.2022.09.048_b0235","unstructured":"Jure Zbontar, Florian Knoll, Anuroop Sriram, et al. fastMRI: An Open Dataset and Benchmarks for Accelerated MRI. arXiv pre-print, page arXiv:1811.08839, 2018."},{"key":"10.1016\/j.neucom.2022.09.048_b0240","unstructured":"Zaccharie Ramzi, Philippe Ciuciu, and Jean-Luc Starck. XPDNet for MRI Reconstruction: an Application to the fastMRI 2020 Brain Challenge. arXiv pre-print, page arXiv:2010.07290, 2020."},{"key":"10.1016\/j.neucom.2022.09.048_b0245","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.neucom.2021.10.013","article-title":"Knowledge tensor embedding framework with association enhancement for breast ultrasound diagnosis of limited labeled samples","volume":"468","author":"Xi","year":"2022","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.neucom.2022.09.048_b0250","doi-asserted-by":"crossref","first-page":"691","DOI":"10.1109\/TUFFC.2021.3132933","article-title":"Multi-Task\/Single-Task Joint Learning of Ultrasound BI-RADS Features","volume":"69","author":"Huang","year":"2022","journal-title":"IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control"}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222011523?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222011523?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,22]],"date-time":"2023-04-22T03:35:00Z","timestamp":1682134500000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222011523"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":50,"alternative-id":["S0925231222011523"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.048","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"DIIK-Net: A full-resolution cross-domain deep interaction convolutional neural network for MR image reconstruction","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.09.048","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}