{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T22:09:43Z","timestamp":1726092583725},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61871046"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Neurocomputing"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1016\/j.neucom.2022.05.010","type":"journal-article","created":{"date-parts":[[2022,5,6]],"date-time":"2022-05-06T11:45:34Z","timestamp":1651837534000},"page":"13-27","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":27,"special_numbering":"C","title":["A new approach for evaluating node importance in complex networks via deep learning methods"],"prefix":"10.1016","volume":"497","author":[{"given":"Min","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Xiaojuan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Jin","sequence":"additional","affiliation":[]},{"given":"Mei","family":"Song","sequence":"additional","affiliation":[]},{"given":"Ziyang","family":"Li","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"8","key":"10.1016\/j.neucom.2022.05.010_b0005","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1038\/nbt.2601","article-title":"Network link prediction by global silencing of indirect correlations","volume":"31","author":"Barzel","year":"2013","journal-title":"Nat. Biotechnol."},{"issue":"7291","key":"10.1016\/j.neucom.2022.05.010_b0010","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.1038\/nature08932","article-title":"Catastrophic cascade of failures in interdependent networks","volume":"464","author":"Buldyrev","year":"2010","journal-title":"Nature"},{"key":"10.1016\/j.neucom.2022.05.010_b0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.physa.2021.126201","article-title":"Cascade phenomenon in multilayer networks with dependence groups and hierarchical structure","volume":"581","author":"Zhang","year":"2021","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"10.1016\/j.neucom.2022.05.010_b0020","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.knosys.2013.01.004","article-title":"Community detection in complex networks multi-objective enhanced firefly algorithm","volume":"46","author":"Amiri","year":"2013","journal-title":"Knowl.-Based Syst."},{"issue":"7346","key":"10.1016\/j.neucom.2022.05.010_b0025","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1038\/nature10011","article-title":"Controllability of complex networks","volume":"473","author":"Liu","year":"2011","journal-title":"Nature"},{"issue":"3","key":"10.1016\/j.neucom.2022.05.010_b0030","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.physrep.2008.09.002","article-title":"Synchronization in complex networks","volume":"469","author":"Arenas","year":"2008","journal-title":"Phys. Rep."},{"issue":"4","key":"10.1016\/j.neucom.2022.05.010_b0035","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1109\/TSMC.2017.2733545","article-title":"Subgraph robustness of complex networks under attacks","volume":"49","author":"Shang","year":"2019","journal-title":"IEEE. Trans. Syst. Man. Cy-S"},{"issue":"1","key":"10.1016\/j.neucom.2022.05.010_b0040","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1080\/0022250X.1972.9989806","article-title":"Factoring and weighting approaches to status scores and clique identification","volume":"2","author":"Bonacich","year":"1972","journal-title":"J. Math. Sociol."},{"issue":"1","key":"10.1016\/j.neucom.2022.05.010_b0045","doi-asserted-by":"crossref","first-page":"35","DOI":"10.2307\/3033543","article-title":"A set of measures of centrality based on betweenness","volume":"40","author":"Freeman","year":"1977","journal-title":"Sociometry"},{"key":"10.1016\/j.neucom.2022.05.010_b0050","doi-asserted-by":"crossref","first-page":"888","DOI":"10.1038\/nphys1746","article-title":"Identification of influential spreaders in complex networks","volume":"6","author":"Kitsak","year":"2010","journal-title":"Nat. Phys."},{"key":"10.1016\/j.neucom.2022.05.010_b0055","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1016\/j.neucom.2019.05.092","article-title":"Evaluation of node importance and invulnerability simulation analysis in complex load-network","volume":"416","author":"Yu","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.05.010_b0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2019.105652","article-title":"A gradient boosting decision tree approach for insider trading identification: An empirical model evaluation of China stock market","volume":"83","author":"Deng","year":"2019","journal-title":"Appl. Soft. Comput."},{"key":"10.1016\/j.neucom.2022.05.010_b0065","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.physa.2018.03.076","article-title":"Fast ranking nodes importance in complex networks based on LS-SVM method","volume":"506","author":"Wen","year":"2018","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"10.1016\/j.neucom.2022.05.010_b0070","series-title":"Proceedings of the 2019 ACM international symposium on blockchain and secure critical infrastructure","first-page":"13","article-title":"A new complex network robustness attack algorithm","author":"Li","year":"2019"},{"key":"10.1016\/j.neucom.2022.05.010_b0075","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.ins.2013.06.024","article-title":"Uncovering overlapping cluster structure via stochastic competitive learning","volume":"247","author":"Silva","year":"2013","journal-title":"Inf. Sci."},{"key":"10.1016\/j.neucom.2022.05.010_b0080","doi-asserted-by":"crossref","first-page":"65462","DOI":"10.1109\/ACCESS.2020.2984286","article-title":"A machine learning based framework for identifying influential nodes in complex networks","volume":"8","author":"Zhao","year":"2020","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.neucom.2022.05.010_b0085","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1038\/s42256-020-0177-2","article-title":"Finding key players in complex networks through deep reinforcement learning","volume":"2","author":"Fan","year":"2020","journal-title":"Nat. Mach. Intell."},{"issue":"4","key":"10.1016\/j.neucom.2022.05.010_b0090","article-title":"Reinforcement learning approach for robustness analysis of complex networks with incomplete information","volume":"144","author":"Tian","year":"2021","journal-title":"Chaos. Soliton. Fract."},{"key":"10.1016\/j.neucom.2022.05.010_b0095","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.neucom.2020.07.028","article-title":"InfGCN: Identifying influential nodes in complex networks with graph convolutional networks","volume":"414","author":"Zhao","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.neucom.2022.05.010_b0100","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105893","article-title":"Identifying critical nodes in complex networks via graph convolutional networks","volume":"198","author":"Yu","year":"2020","journal-title":"Knowl-Based Syst."},{"issue":"1","key":"10.1016\/j.neucom.2022.05.010_b0105","first-page":"1","article-title":"Identifying vital nodes in complex networks by adjacency information entropy","volume":"10","author":"Xu","year":"2020","journal-title":"Sci. Rep."},{"issue":"3","key":"10.1016\/j.neucom.2022.05.010_b0110","article-title":"Identifying influential nodes in complex networks based on global and local structure","volume":"541","author":"Sheng","year":"2020","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"10.1016\/j.neucom.2022.05.010_b0115","doi-asserted-by":"crossref","first-page":"1044","DOI":"10.1016\/j.physa.2018.08.135","article-title":"Identifying influential nodes in complex networks based on the inverse-square law","volume":"512","author":"Fei","year":"2018","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"10.1016\/j.neucom.2022.05.010_b0120","doi-asserted-by":"crossref","first-page":"488","DOI":"10.1016\/j.physa.2019.01.136","article-title":"A novel measure of identifying influential nodes in complex networks","volume":"523","author":"Lv","year":"2019","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"10.1016\/j.neucom.2022.05.010_b0125","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.physa.2016.05.048","article-title":"Fast ranking influential nodes in complex networks using a k-shell iteration factor","volume":"461","author":"Wang","year":"2016","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"10.1016\/j.neucom.2022.05.010_b0130","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1016\/j.cam.2018.05.051","article-title":"Identification of influential spreaders based on classified neighbors in real-world complex networks","volume":"320","author":"Li","year":"2018","journal-title":"Appl. Math. Comput."},{"issue":"1","key":"10.1016\/j.neucom.2022.05.010_b0135","first-page":"1","article-title":"Identification of influential spreaders in complex networks using HybridRank algorithm","volume":"8","author":"Sara","year":"2018","journal-title":"Appl. Math. Comput."},{"key":"10.1016\/j.neucom.2022.05.010_b0140","doi-asserted-by":"crossref","first-page":"21380","DOI":"10.1038\/srep21380","article-title":"Locating influential nodes via dynamics-sensitive centrality","volume":"6","author":"Liu","year":"2016","journal-title":"Sci. Rep."},{"issue":"3","key":"10.1016\/j.neucom.2022.05.010_b0145","doi-asserted-by":"crossref","DOI":"10.1063\/1.5055069","article-title":"Identifying influential spreaders in complex networks by propagation probability dynamics","volume":"29","author":"Chen","year":"2019","journal-title":"Chaos"},{"issue":"15","key":"10.1016\/j.neucom.2022.05.010_b0150","article-title":"A novel method to evaluate node importance in complex networks","volume":"526","author":"Yang","year":"2019","journal-title":"Phys. A Stat. Mech. Appl."},{"issue":"6825","key":"10.1016\/j.neucom.2022.05.010_b0155","article-title":"Identifying node importance based on evidence theory in complex networks","volume":"529","author":"Mo","year":"2019","journal-title":"Phys. A Stat. Mech. Appl."},{"issue":"1","key":"10.1016\/j.neucom.2022.05.010_b0160","article-title":"Identifying influential nodes in complex networks based on a spreading influence related centrality","volume":"536","author":"Chen","year":"2019","journal-title":"Phys. A Stat. Mech. Appl."},{"issue":"3","key":"10.1016\/j.neucom.2022.05.010_b0165","first-page":"319","article-title":"A contraction algorithm for finding all the DC solutions of piecewise-linear circuits","volume":"4","author":"Michal","year":"2011","journal-title":"J. Circuit. Syst. Comp."},{"issue":"1","key":"10.1016\/j.neucom.2022.05.010_b0170","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1023\/A:1026502220076","article-title":"A dynamic domain contraction algorithm for nonconvex piecewise linear network flow problems","volume":"17","author":"Kim","year":"2000","journal-title":"J. Global. Optim."},{"issue":"1","key":"10.1016\/j.neucom.2022.05.010_b0175","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.cpc.2012.09.004","article-title":"Unified contraction algorithm for multi-baryon correlators on the lattice","volume":"184","author":"Doi","year":"2013","journal-title":"Comput. Phys. Commun."},{"issue":"1","key":"10.1016\/j.neucom.2022.05.010_b0180","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/S0377-2217(00)00287-3","article-title":"A self-adaptive projection and contraction algorithm for the traffic assignment problem with path-specific costs","volume":"135","author":"Chen","year":"2001","journal-title":"Eur. J. Oper. Res."},{"key":"10.1016\/j.neucom.2022.05.010_b0185","doi-asserted-by":"crossref","first-page":"13172","DOI":"10.1038\/srep13172","article-title":"Improving the accuracy of the k-shell method by removing redundant links from a perspective of spreading dynamics","volume":"5","author":"Liu","year":"2015","journal-title":"Sci. Rep."},{"issue":"4","key":"10.1016\/j.neucom.2022.05.010_b0190","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1140\/epjb\/e20020122","article-title":"Epidemic outbreaks in complex heterogeneous networks","volume":"26","author":"Moreno","year":"2002","journal-title":"Eur. Phys. J. B"},{"key":"10.1016\/j.neucom.2022.05.010_b0195","unstructured":"B. Macdonald, P. Shakarian, N. Howard, G. Moores, Spreaders in the network SIR model an empirical study, arXiv preprint arXiv1208.4269, (2012)."},{"key":"10.1016\/j.neucom.2022.05.010_b0200","unstructured":"T. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks. 2016."},{"key":"10.1016\/j.neucom.2022.05.010_b0205","series-title":"Proceedings of the 43rd International ACM SIGIR conference on research and development in information retrieval","first-page":"659","article-title":"Multi-behavior recommendation with graph convolutional networks","author":"Jin","year":"2020"},{"key":"10.1016\/j.neucom.2022.05.010_b0210","series-title":"Proceedings of the 44th International ACM SIGIR conference on research and development in information retrieval","first-page":"2141","article-title":"ConsisRec: enhancing GNN for social recommendation via consistent neighbor aggregation","author":"Yang","year":"2021"},{"issue":"3","key":"10.1016\/j.neucom.2022.05.010_b0215","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1109\/29.21701","article-title":"Phoneme recognition using time-delay neural networks","volume":"37","author":"Waibel","year":"1989","journal-title":"IEEE Trans. Acoust. Speech Signal Process"},{"issue":"6","key":"10.1016\/j.neucom.2022.05.010_b0220","first-page":"1","article-title":"Deep-feature-based autoencoder network for few-shot malicious traffic detection","volume":"2021","author":"He","year":"2021","journal-title":"Secur. Commun. Netw."},{"issue":"5","key":"10.1016\/j.neucom.2022.05.010_b0225","doi-asserted-by":"crossref","first-page":"2157004","DOI":"10.1142\/S0218001421570044","article-title":"CNN-SSPSO: a hybrid and optimized CNN approach for peripheral blood cell image recognition and classification","volume":"35","author":"Kumar","year":"2021","journal-title":"Int. J. Pattern. Recogn."},{"issue":"6","key":"10.1016\/j.neucom.2022.05.010_b0230","doi-asserted-by":"crossref","first-page":"964","DOI":"10.3390\/sym13060964","article-title":"A commodity classification framework based on machine learning for analysis of trade declaration","volume":"13","author":"He","year":"2021","journal-title":"Symmetry"},{"key":"10.1016\/j.neucom.2022.05.010_b0235","doi-asserted-by":"crossref","first-page":"27823","DOI":"10.1038\/srep27823","article-title":"Identifying a set of influential spreaders in complex networks","volume":"6","author":"Zhang","year":"2016","journal-title":"Sci. Rep."},{"issue":"46","key":"10.1016\/j.neucom.2022.05.010_b0240","doi-asserted-by":"crossref","first-page":"16569","DOI":"10.1073\/pnas.0507655102","article-title":"An index to quantify an individual\u2019s scientific research output","volume":"102","author":"Hirsch","year":"2005","journal-title":"P. Natl. Acad. Sci."},{"key":"10.1016\/j.neucom.2022.05.010_b0245","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.1038\/nature08932","article-title":"Catastrophic cascade of failures in interdependent networks","volume":"464","author":"Buldyrev","year":"2009","journal-title":"Nature"},{"issue":"4","key":"10.1016\/j.neucom.2022.05.010_b0250","doi-asserted-by":"crossref","first-page":"452","DOI":"10.1086\/jar.33.4.3629752","article-title":"An information flow model for conflict and fission in small groups","volume":"33","author":"Zachary","year":"1977","journal-title":"J. Anthropol. Res."},{"issue":"18","key":"10.1016\/j.neucom.2022.05.010_b0255","doi-asserted-by":"crossref","first-page":"2674","DOI":"10.1038\/sj.onc.1209290","article-title":"A gene fusion network in human neoplasia","volume":"25","author":"H\u00f6glund","year":"2006","journal-title":"Oncogene"},{"issue":"6804","key":"10.1016\/j.neucom.2022.05.010_b0260","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1038\/35036627","article-title":"The large-scale organization of metabolic networks","volume":"407","author":"Jeong","year":"2000","journal-title":"Nature"},{"issue":"3","key":"10.1016\/j.neucom.2022.05.010_b0265","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1140\/epjb\/e2011-10979-2","article-title":"Robust network community detection using balanced propagation","volume":"81","author":"\u0160ubelj","year":"2011","journal-title":"Eur. Phys. J. B"},{"issue":"3","key":"10.1016\/j.neucom.2022.05.010_b0270","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.74.036104","article-title":"Finding community structure in networks using the eigenvectors of matrices","volume":"74","author":"Newman","year":"2006","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.neucom.2022.05.010_b0275","unstructured":"J. Kunegis, Hamster dataset, http:\/\/konect.cc\/networks\/petster-hamster\/."},{"key":"10.1016\/j.neucom.2022.05.010_b0280","unstructured":"V. Batagelj, Pajek datasets, http:\/\/vlado.fmf.uni-lj.si\/pub\/networks\/data\/."},{"issue":"5","key":"10.1016\/j.neucom.2022.05.010_b0285","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.70.056122","article-title":"Models of social networks based on social distance attachment","volume":"70","author":"Bogu\u00f1\u00e1","year":"2004","journal-title":"Phys. Rev. E"},{"key":"10.1016\/j.neucom.2022.05.010_b0290","unstructured":"J. Kunegis, Sister cities dataset, http:\/\/konect.cc\/networks\/twin\/."},{"issue":"1","key":"10.1016\/j.neucom.2022.05.010_b0295","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1217299.1217301","article-title":"Graphs over time: densification laws, shrinking diameters and possible explanations","volume":"1","author":"Leskovec","year":"2007","journal-title":"ACM Trans. Knowl. Discov. from Data"},{"key":"10.1016\/j.neucom.2022.05.010_b0300","unstructured":"J. Kunegis, Condensed matter dataset, http:\/\/konect.cc\/networks\/dimacs10-cond-mat-2003\/."},{"key":"10.1016\/j.neucom.2022.05.010_b0305","unstructured":"J. Kunegis, Internet topology dataset, http:\/\/konect.cc\/networks\/topology\/."},{"key":"10.1016\/j.neucom.2022.05.010_b0310","series-title":"Proceedings of the 31st international conference on neural information processing systems","first-page":"1025","article-title":"Inductive representation learning on large graphs","author":"Hamilton","year":"2017"},{"key":"10.1016\/j.neucom.2022.05.010_b0315","series-title":"Published as a conference paper at ICLR","article-title":"Graph attention networks","author":"Velikovi","year":"2018"},{"key":"10.1016\/j.neucom.2022.05.010_b0320","unstructured":"L. Bai, L. Yao, C. Li, X. Wang, C. Wang, Adaptive graph convolutional recurrent network for traffic forecasting, arXiv:2007.02842v1 (2020)."}],"container-title":["Neurocomputing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222005392?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0925231222005392?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T00:37:10Z","timestamp":1678063030000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0925231222005392"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8]]},"references-count":64,"alternative-id":["S0925231222005392"],"URL":"https:\/\/doi.org\/10.1016\/j.neucom.2022.05.010","relation":{},"ISSN":["0925-2312"],"issn-type":[{"value":"0925-2312","type":"print"}],"subject":[],"published":{"date-parts":[[2022,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new approach for evaluating node importance in complex networks via deep learning methods","name":"articletitle","label":"Article Title"},{"value":"Neurocomputing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.neucom.2022.05.010","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}